

Front-end of Wake-Up-Word Speech Recognition
System Design on FPGA

by

Mohamed Muftah Eljhani

Master of Science
in Computer Information Systems

Florida Institute of Technology
July 2014

Master of Science
in Computer Engineering

Beijing University of Aeronautics & Astronautics
December 2004

A dissertation submitted to the College of Engineering at
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
In

Computer Engineering

Melbourne, Florida
December, 2014

© Copyright 2014 Mohamed Muftah Eljhani

All rights reserved

The author grants permission to make single copies ____________________

We the undersigned committee
hereby approve the attached dissertation as fulfilling in part the

requirements for the degree of
Doctor of Philosophy of Computer Engineering

Front-end of Wake-Up-Word Speech Recognition System Design on FPGA

by

Mohamed Muftah Eljhani

_______________________________ ________________________________

Veton Z. Këpuska, Ph.D. Samuel P. Kozaitis, Ph.D.
Associate Professor Professor and Department Head
Electrical and Computer Engineering Electrical and Computer Engineering
Committee Chair

 _______________________________ ________________________________

Ivica Kostanic, Ph.D. Marius C. Silaghi, Ph.D.

 Associate Professor Associate Professor
 Electrical and Computer Engineering Computer Science

iii

Abstract

Title

Front-end of Wake-Up-Word Speech Recognition System Design on FPGA

Author

Mohamed Muftah Eljhani

Major Advisor

Veton Z. Këpuska, Ph.D.

A typical speech recognition system is push button operated (Push-to-

talk), which requires hand movement and hence mixed multi-modal

interface. However, for disabled patients and those who use hands-busy

applications (e.g., where the user has objects to manipulate or device to

control while asking for assistance from another device) movement may be

restricted or impossible. The only alternative is to use Speech Only Interface.

The method that is being proposed is called Wake-Up-Word Speech

Recognition (WUW-SR). A WUW-SR system would allow the user to operate

(activate) many systems (Cell phone, Computer, Elevator, etc.) with speech

commands instead of hand movements.

This work defines a new front-end paradigm of the Wake-Up-Word

Speech Recognition on Field Programmable gate Arrays (FPGA). The-State-

Of-The-Art Front-end of WUW-SR system is based on three different

iv

subsystems that produce three sets of features: (1) Mel-frequency Cepstral

Coefficients (MFCC), (2) Linear Predictive Coding Coefficients (LPC), and (3)

Enhanced Mel-frequency Cepstral Coefficients (ENH_MFCC). These

extracted features are then compressed and transmitted to the server via a

dedicated channel, where subsequently they are decoded. These features are

decoded with corresponding Hidden Markov Models (HMMs) in the back-

end stage of the WUW-SR.

In the WUW-SR system, the front-end processor is located at the

terminal (e.g. Mobile phone) which is typically connected over a data

network to remote back-end recognition (e.g., server). WUW’s front-end can

be added to any hand-held electronic device compatible with WUW-SR and

command (activate) it by using our voice only (no push to talk as is presently

done).

WUW’s front-end is designed, and implemented in Altera DSP

development kit with Cyclone III FPGA as a portable system acting as a

processor that is capable of computing three different sets of features at a

much faster rate than software. It is cost effective, consumes very little

power, and it is not limited by having to operate on a general-purpose

computer so it can be used on any portable device.

v

Contents

ABSTRACT --- III

KEYWORDS --- IX

FIGURES--- X

ACRONYMS & ABBREVIATIONS --- XIV

ACKNOWLEDGMENTS -- XIX

DEDICATION --- XX

1 INTRODUCTION -- 1

1.1 AIMS AND OBJECTS -- 3

1.2 AUTOMATIC SPEECH RECOGNITION -- 4

1.3 WAKE-UP-WORD SPEECH RECOGNITION -- 6

1.3.1 Wake-Up-Word Applications --- 8

1.3.2 Wake-Up-Word Definition -- 10

1.3.3 WUW-SR Different from other SR Systems ------------------------------- 11

1.3.4 Significant of WUW-SR -- 12

1.3.5 Wake-Up-Word-SR Implementation --------------------------------------- 15

1.3.5.1 Front End Signal Processing -- 17

1.4 FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS) --------------------------------------- 18

1.5 MOTIVATION --- 23

vi

2 SPEECH RECOGNITION SYSTEM ON PROGRAMMABLE CHIP --------- 26

2.1 SPEECH RECOGNITION SOFTWARE VS. HARDWARE DESIGN ---------------------------- 28

2.2 COMMERCIAL SPEECH RECOGNITION SYSTEMS -- 30

2.3 ALTERNATIVE SPEECH RECOGNITION METHODS -- 32

2.4 THE-STATE-OF-THE-ART WAKE-UP-WORD SPEECH RECOGNITION ------------------- 34

2.4.1 Front End of Wake-Up-Word Speech Recognition ---------------------- 38

3 WAKE-UP-WORD-SR SYSTEM ARCHITECTURE ---------------------------- 41

3.1 FRONT END OF WAKE-UP-WORD SPEECH RECOGNITION ------------------------------ 43

3.2 VOICE ACTIVITY DETECTOR (VAD) OF WUW-SR --------------------------------------- 44

3.2.1 First VAD Phase - Single Frame Speech/Non-Speech Classification - 45

3.2.2 Second VAD Phase – Final Decision Logic --------------------------------- 47

3.3 BACK END OF WUW-SR-- 48

4 FRONT END SYSTEM DESIGN --- 50

4.1 FEATURES EXTRACTION --- 51

4.1.1 Mel-scale Frequency Cepstral Coefficients (MFCC) --------------------- 52

4.1.2 Autocorrelation Linear Predictive Coding (LPC)-------------------------- 52

4.1.3 Enhanced Mel-scale Frequency Cepstral Coefficients (ENH-MFCC) - 54

4.2 SYSTEM ARCHITECTURE --- 54

4.3 FRONT END WITH BUILT-IN VAD ARCHITECTURE --------------------------------------- 56

4.4 DESIGN FUNCTION DESCRIPTION --- 60

vii

5 FRONT END HARDWARE IMPLEMENTATION ----------------------------- 66

5.1 SYSTEM DESIGN ENVIRONMENT -- 66

5.1.1 Hardware Design Tools -- 66

5.1.2 Software Design Tools --- 69

5.1.2.1 Quartus II 64-bits --- 69

5.1.2.2 ModelSim Altera -- 70

5.2 FRONT END SYSTEM ARCHITECTURE --- 70

5.2.1 MFCC Front End Subsystem Implementation ---------------------------- 72

5.2.1.1 CODEC Audio Data Interface --- 76

5.2.1.2 Serial-to-Parallel & Integer-to-Floating Point Converter ------------------------------ 78

5.2.1.3 Pre-emphasis Filter--- 79

5.2.1.4 Hamming Window & Advance Buffering --- 80

5.2.1.5 Fast Fourier Transform -- 83

5.2.1.6 MFCC Spectrogram--- 84

5.2.1.7 Mel-scale Filtering -- 87

5.2.1.8 Discrete Cosine Transform --- 88

5.2.1.9 MFCC Features -- 89

5.2.2 LPC Front End Subsystem Implementation ------------------------------- 90

5.2.2.1 LPC Spectrogram-- 92

5.2.2.2 LPC Features --- 94

5.2.3 ENH-MFCC Front End Subsystem Implementation ---------------------- 94

5.2.3.1 ENH-MFCC Spectrogram -- 96

5.2.3.2 ENH-MFCC Features --- 97

5.2.4 Voice Activity Detector Implementation ---------------------------------- 98

viii

5.2.4.1 Log Energy Feature --- 99

5.2.4.2 Mel-frequency Cepstral Coefficient Feature -- 100

5.2.4.3 Leaner Predictive Coding Feature --- 101

6 RESULTS AND COMPARISONS --- 101

6.1 CODEC AUDIO DATA INTERFACE --- 102

6.2 INTEGER-TO-FLOATING-POINT FUNCTION -- 104

6.3 PRE-EMPHASIS FUNCTION --- 106

6.4 HAMMING WINDOW FUNCTION -- 108

6.5 FAST FOURIER TRANSFORM (FFT) FUNCTION -- 111

6.6 SPECTROGRAM FUNCTION --- 113

6.7 LINEAR PREDICTIVE CODING (LPC) FUNCTION --- 115

6.8 MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) FUNCTION ---------------------- 120

6.8.1 Mel-Scale Filter Function --- 120

6.8.2 Discrete Cosine Transform (DCT) Function ------------------------------- 123

6.9 ENHANCED SPECTRUM FUNCTION --- 125

6.10 VOICE ACTIVITY DETECTOR (VAD) -- 130

6.11 HARDWARE FRONT END OUTPUT VS. SOFTWARE FRONT END OUTPUT -------------- 133

7 CONCLUSIONS --- 145

REFERENCES -- 147

APPENDIX: PUBLICATIONS -- 155

ix

Keywords

 Automatic Speech Recognition

 Digital Signal Processing (DSP)

 Enhanced Mel-frequency Cepstral Coefficients (ENH-MFCC)

 Feature Extraction

 Field-Programmable Gate Arrays (FPGA)

 Front-end

 Hardware Description Language (HDL)

 Linear Predictive Coding (LPC)

 Mel-frequency Cepstral Coefficients (MFCC)

 Speech Signal Processing (SSP)

 Voice Activity Detector (VAD)

 Wake-Up-Word Speech Recognition (WUW-SR)

x

Figures

Figure 3.1 – Wake-Up-Word-Speech Recognition Overall Architecture ---------------------------------- 41

Figure 3.2 – Front-end, Voice Activity Detector, and Back-end --- 43

Figure 3.3 – Speech signal with VAD segmentation, MFCC spectrogram, LPC spectrogram, and

ENH-MFCC spectrogram --- 45

Figure 4.1 – Front-end of WUW-SR Block Diagram-- 56

Figure 4.2 – Front-end of WUW-SR with VAD Block Diagram -- 57

Figure 5.1 – Front-End of WUW-SR Architecture Block Diagram-- 72

Figure 5.2 – MFCC Front-end Subsystem --- 74

Figure 5.3 – IEEE-754 Single-precision Floating-point Representation ------------------------------------ 78

Figure 5.4 – Pre-emphasis Function --- 80

Figure 5.5 - Hamming Window -- 81

Figure 5.6 - Speech Signal before and after applying Hamming Window -------------------------------- 83

Figure 5.7 - Windowed Speech to Fourier Transform -- 84

Figure 5.8 - MFCC Hardware Front-end Spectrogram for the word “Onward” ------------------------- 86

Figure 5.9 - MFCC Hardware Front-end Spectrogram for the word “Voyager” ------------------------- 86

Figure 5.10 - Mel-scale Function -- 87

Figure 5.11 - Mel-scale Bank Filter --- 88

Figure 5.12 - MFCC Hardware Front-end Features (12-Coefficients) --------------------------------------- 90

Figure 5.13 - MFCC Hardware Front-end Features (11-Coefficients) --------------------------------------- 90

Figure 5.14 – LPC Front-end Subsystem -- 91

Figure 5.15 - LPC Hardware Front-end Spectrogram for the word “Onward” --------------------------- 93

Figure 5.16 - LPC Hardware Front-end Spectrogram for the word “Voyager” -------------------------- 93

xi

Figure 5.17 - LPC Hardware Front-end Features (12-Coefficients) -- 94

Figure 5.18 - LPC Hardware Front-end Features (11-Coefficients) -- 94

Figure 5.19 – ENH-MFCC Front-end Subsystem -- 96

Figure 5.20 - ENH-MFCC Hardware Front-end Spectrogram for the word “Onward” ----------------- 97

Figure 5.21 - ENH-MFCC Hardware Front-end Spectrogram for the word “Voyager” ---------------- 97

Figure 5.22 - ENH-MFCC Hardware Front-end Features (12-Coefficients) -------------------------------- 97

Figure 5.23 - ENH-MFCC Hardware Front-end Features (11-Coefficients) -------------------------------- 98

Figure 5.24 – Voice Activity Detector Modules --- 99

Figure 6.1 – CODEC DSP Interface Simulation Waveforms -- 104

Figure 6.2 – 16-bit Integer-to-32bit Floating-point Simulation Waveforms --------------------------- 106

Figure 6.3 – Pre_emphasis Filter Simulation Waveforms --- 108

Figure 6.4 – Hamming window Simulation waveforms -- 111

Figure 6.5 – FFT Simulation Waveforms -- 113

Figure 6.6 – Spectrogram Simulation Waveforms --- 115

Figure 6.7 – Mel-scale Filter Output --- 121

Figure 6.8 – MATLAB, Hardware, and C++ Front-end MFCC Spectrograms for “Onward” Audio

Data --- 135

Figure 6.9 – MATLAB, Hardware, and C++ Front-end LPC Spectrograms for “Onward” Audio Data

 -- 135

Figure 6.10 – MATLAB, Hardware, and C++ Front-end Enhanced MFCC Spectrograms for

“Onward” Audio Data --- 136

Figure 6.11 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Onword” Audio

Data --- 137

xii

Figure 6.12 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Onword”

Audio Data -- 137

Figure 6.13 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Voyager” Audio

Data --- 138

Figure 6.14 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Voyager”

Audio Data. (Due to limited amount of hardware resources the part of the data is not show

in the resulting spectrograms). --- 139

Figure 6.15 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager” Audio

Data (12- Coefficients) --- 140

Figure 6.16 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager”

Audio Data (12- Coefficients). (Due to limited amount of hardware resources the part of

the data is not show in the resulting Histograms). -- 140

Figure 6.17 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager” Audio

Data (11- Coefficients C2-C12) -- 141

Figure 6.18 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager”

Audio Data (11- Coefficients C2-C12). (Due to limited amount of hardware resources the

part of the data is not show in the resulting Histograms) -- 142

Figure 6.19 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC Spectrograms for

“Operator” -- 143

Figure 6.20 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Spectrograms for

“Operator” Audio Data -- 143

Figure 6.21 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms for

“Operator” Audio Data -- 144

xiii

Figure 6.22 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms for

“Operator” Audio Data -- 144

xiv

Acronyms & Abbreviations

ADC Analog-To-Digital Converter

ALTFP Altera Floating-Point

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

ASR Automatic Speech Recognition

AVR Advanced Virtual RISC

BSD Berkeley Software Distribution

CA Correct Acceptance

CLB Configurable Logic Blocks

CODEC Encoder-Decoder

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CR Correct Rejection

DAC Digital to Analog Converter

DC Direct Current

DCT Discrete Cosine Transform

DDR SDRAM Double Data Rate SDRAM

DEL Deletion

DFT Discrete Fourier Transform

xv

DIF Decimation-Infrequency

DPRAM Dual Port Random Access Memory

DSP Digital Signal Processing

DTW Dynamic Time Warping

DUT Device Under Test

DV Data Valid

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable ROM

ENH-MFCC Enhanced-Mel-Frequency Cepstral Coefficients

FFT Fast Fourier Transform

FIFO First-In, First-Out

FIR Finite Impulse Response

FP Floating-Point

FPGA Field-Programmable Gate Array

GPL General Public License

GUI Graphic User Interface

HDL Hardware Description Language

HMM Hidden Markov Model

HPF High Pass Filter

HSMC High-Speed Mezzanine Card

xvi

I²C Inter-Integrated Circuit

IEEE Institute of Electrical And Electronics Engineers

INS Insertion

INV In Vocabulary

I/O Input/output

IP Intellectual Property

JTAG Joint Test Action Group

KB Kilo Byte

LCD Liquid Crystal Display

LE Logic Element

LP Low Power

LPC Linear Predictive Coding

LPCC Linear Predictive Coding Coefficients

LPF Low Pass Filter

LS Lowest Power with Security

LSB Least Significant Bit

LUT Look-Up Table

MFCC Mel-Frequency Cepstral Coefficients

MHz Mega Hertz

MSB Most Significant Bit

xvii

OOV Out Of Vocabulary

PC Personal Computer

PCB Printed Circuit Board

PLD Programmable Logic Device

PLP Perceptual Linear Predictive Coefficients

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

RTR Run-Time Reconfiguration

SDRAM Synchronous Dynamic RAM

SNR Signal-To-Noise Ratio

SOC System-On a Chip

SOPC System-On a Programmable Chip

SPI Serial Peripheral Interface

SR Speech Recognition

SRAM Static RAM

SUB Substitution

SVM Support Vector Machines

TB Test-Bench

xviii

TSMC Taiwan Semiconductor Manufacturing Company

VAD Voice Activity Detector

VERILOG HDL Verifying Logic Hardware Description Language

VHDL Very High Speed Integrated Circuit Hardware

 Description Language

VLSI Very Large Scale Integrated Circuit

WER Word Error Rate

WUW Wake-Up-Word

xix

Acknowledgments

I would like to express my gratitude toward Dr. Veton Z. Këpuska as

my Faculty Advisor for pushing this research work forward, always being

available to help and support.

I would like to thank Dr. Samuel P. Kozaitis as the head of Electrical

and Computer Engineering Department, one of my Ph.D. Committee for his

valuable support and providing us with the Altera Software Licenses and

FPGA Development Kits.

Special thanks to Brian H. Hight for leading us his knowledge and

experience on FPGA design.

Finally, we thank Altera for providing the tools for the project,

including the software, documentation about this contest, and a platform to

showcase our designs.

xx

Dedication

For my Wife

A

&

For my Kids

A, M, W, Y, and Y

1

1 Introduction

“Operator (WUW for Elevator Simulator). Take me to the last floor. ”

Operator responds “Taking you to the last floor.” The ideas of being able to

talk to a machine and have it understand you have been a reoccurring theme

in science fiction for decades. While we are not yet at the stage where

electronic machines can comprehend our every word and act on it, these

machines are becoming ever more complex and ubiquitous.

WUW is a new area in speech recognition. The WUW recognizer is a

highly efficient and accurate recognizer specializing in the detection of a

single word or phrase when spoken in the context of requesting attention,

while rejecting all other words, phrases, sounds, noises and other acoustic

events with virtually 100% accuracy.

Continuous speech recognition has been acknowledged as one of the

most challenging problems today. There are many issues that contribute to

the difficulty of automatically recognizing human speech such as corruption

of noise, variability of the speaker and speaking mode, change of

environment conditions, inaccuracy of model assumption, complexity of

language, etc. In addition, as a statistical model based system, a speech

recognizer demands sufficient, well transcribed speech data for the model

2

training in order to achieve satisfactory performance. It is often intractable to

fulfill this requirement since the time and expense spent on speech data

collection and transcription are not always affordable for many real word

applications.

For the past several decades, designers have processed speech for a

wide variety of applications ranging from mobile communications to

automatic reading machines. Speech has not been used much in the field of

electronics and computers due to the complexity and verity of speech signals.

However with modern processes and methods we can process speech signals

in Field-Programmable Gate Array (FPGA) chips.

While others concentrate on developing the algorithms and models,

there still remains the question of how to implement them on programmable

chip. Several speech recognition software packages already exist that can run

on a PC, including the Wake-Up-Word Speech Recognition System; however,

they are limited by having to operate on a general-purpose processor. In the

end, to achieve the maximum processing power, application-specific

hardware is the answer.

A great deal of work has been conducted in this dissertation to

address this problem by designing an efficient hardware front-end of

State-Of-The-Art WUW-SR with an FPGA using an DSP Altera-based system,

3

acting as a processor that is responsible for extracting three types of features

from the input audio signal. These features are Mel-frequency Cepstral

Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), Enhanced

Mel-frequency Cepstral Coefficients (ENH-MFCC).

1.1 Aims and Objects

One of the goals of speech recognition is to allow natural

communication between humans and computers. A major obstacle to this is

the fact that most systems today still rely to some extent on non-speech

input. For example, some systems use a “push to talk” model, meaning that

speech recognition is only activated when the user pushes a button. Systems

that are “continuously listening” usually suffer from poor accuracy, especially

if they are speaker independent.

The WUW Speech Recognizer is a complex system comprising of

three major parts: the front-end, Voice Activity Decoder (VAD), and back-

end, which have been implemented entirely in C++ and are capable of

running live and performing recognitions in real time (V. Z. Këpuska and T.

B. Klein) [1]. The aim of this research is to design and implement front-end

with built-in VAD of WUW Speech Recognizer in hardware, which is

responsible for generating three sets of features from the input audio signals:

4

 MFCC [Mel-frequency Cepstral Coefficients]

 LPC [Linear Predictive Coding Coefficients]

 ENH-MFCC [Enhanced Mel-frequency Cepstral Coefficients]

These features need to be decoded with corresponding HMMs in the back-

end stage of the WUW Speech Recognizer.

We aim to produce an efficient hardware front-end system with an

FPGA portable system acting as a processor that is capable of computing

three different sets of features at a much faster rate than software. It is cost

effective, consumes very little power, and it is not limited by having to

operate on a general-purpose processor so it can be used on any portable

device. Our state-of-the-art front-end is different from other front-end

designs. It has the capability of computing and producing three different sets

of features simultaneously.

1.2 Automatic Speech Recognition

Automatic speech recognition (ASR) is the computer’s ability to

convert a speech audio signal into its textual transcription (Xuedong Huang,

Alex Acero, Hsiao-Wuen Hon) [2]. Some motivations for building ASR

systems are presented in order of difficulty to improve human-computer

interaction through spoken language interfaces, to solve difficult problems

5

such as speech to speech translation, and to build intelligent systems that

can process spoken language as proficiently as humans, (Ron Cole, Joseph

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen, Antonio

Zampolli, Victor Zue (Eds.)) [3].

 Speech as a computer interface has numerous benefits over

traditional interfaces such as a Graphic User Interface (GUI) with mouse and

keyboard. Speech is natural for humans, requires no special training,

improves multitasking by leaving the hands and eyes free, and is often faster

and more efficient to transmit than using conventional input methods.

Though many tasks are solved with visual, pointing interfaces and/or

keyboards, speech has the potential to be a better interface for a number of

tasks where full natural language communication is useful, (Ron Cole, Joseph

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen, Antonio

Zampolli, Victor Zue (Eds.)) [3] and the recognition performance of the

speech recognition system is sufficient to perform the tasks accurately (V.

Këpuska) [4] , (T. Klein) [5], in circumstances where the user wants to

multitask while asking for assistance from the computer may include hands-

busy and eyes-busy applications where the user has objects to manipulate or

equipment and/or devices to control.

6

1.3 Wake-Up-Word Speech Recognition

Novel speech recognition technology named Wake-Up-Word Speech

Recognition (WUW-SR) (V. Këpuska) [6], (V. Këpuska) [7] bridges the gap

between natural language and other voice recognition tasks (V. Këpuska, T.

Klein) [8]. WUW-SR is a highly efficient and accurate recognizer specializing

in the detection of a single word or phrase when spoken in the alerting or

WUW context (V. Këpuska, D.S. Carstens, R. Wallace) [9] of requesting

attention, while rejecting all other words, phrases, sounds, noises and other

acoustic events with virtually 100% accuracy including the same word or

phrase uttered in non-alerting (referential) context.

The WUW speech recognition task is similar to keyword spotting.

However, WUW-SR is different in one important aspect: to the ability

identify the specific word or phrase used in alerting context (and not other

contexts; e.g. referential). Specifically, the sentence, ``Computer, begin

PowerPoint presentation'' exemplifies the use of the word `’computer'’ in

alerting context. On the other hand, in the sentence, “My computer has dual

Intel 64-bit processors, each with quad cores'' the word ‘computer’ is used in

a referential (non-alerting) context. Traditional keyword spotters will not be

able to discriminate between the two cases. The discrimination will be only

possible by deploying higher level natural language processing subsystem in

7

order to discriminate between the two. However, for applications, deploying

such solutions is practically impossible. It is very difficult to determine in

real-time if the user is speaking to the computer or about the computer.

Traditional approaches to keyword spotting are usually based on large

vocabulary word recognizers or phone recognizers (J.R. Rohlicek, W. Russell,

S. Roukos, H. Gish) [10] , or whole-word recognizers that either use HMMs or

word templates, (C. Myers, L. Rabiner, A. Rosenberg) [11]. Word recognizers

require tens of hours of word-level transcriptions as well as a pronunciation

dictionary. Phone recognizers require phone marked transcriptions and

whole-word recognizers require word markings for each of the keywords, (A.

Garcia, H. Gish) [12].

The word-based keyword recognizers are not able to find words that

are out-of-vocabulary (OOV). To solve the problem of OOV keywords,

spotting approaches based on phone-level recognition have been applied to

supplement or replace systems based upon large vocabulary recognition

,(D.A. James, S.J. Young) [13]. In contrast the (V. Z. Këpuska and T. B. Klein)

[1] approach to WUW-SR is independent to what is the basic unit of

recognition (word, phone or any other sub-word unit). Furthermore, it is

capable to discriminate whether or not the user is speaking to the recognizer

without deploying language modeling and natural language understanding

8

methods. This feature makes WUW-SR task distinct from keyword spotting.

1.3.1 Wake-Up-Word Applications

The applications of WUW-SR are numerous, and the following

discussion mentions some of the possibilities.

1. Automobiles - Current voice controlled navigation systems and

entertainment systems make use of the “push to talk” paradigm.

WUW would enable completely hands free communication.

2. Conference calls - In the business world it is very important to be able

to retrieve information on the fly and dynamically manage the

participants in a telephone conference call. Currently, adding or

dropping users from the conference call is not a trivial undertaking

and requires knowledge of the particular telephone system. With

WUW, it is be possible to achieve such a dynamic control by simply

invoking the system via the WUW and issuing the command

thereafter. For example, “operator… <beep> connect John.

<percolating sound>.”

3. Smart room - With current wireless communications technology and

microphone arrays it is possible to interface a computer to all

appliances and electronic devices. Adding a speech interface to the

9

system would allow one to control the electronic devices in a room via

voice commands. However, adding a speech interface is currently not

practical because state of the art recognizers are insufficiently

accurate and robust in the “continuously listening” mode. However,

WUW could be used as an interface to the command & control speech

recognizer and make this a practical solution.

4. People with disabilities - From the onset, speech recognition

technology have been viewed as indispensible to improve the lives of

people with disabilities. WUW will further improve the technologies

that these people depend on and improve the quality of their lives.

5. Military - Through a personal communication it was conveyed that a

military personnel was endangered due to overly restrictive usage

requirements of automatic translation system that required its user to

push the button when speaking to it. In order to do that, this military

officer was required to drop his weapon to free his hands in order to

use the device. At that moment he became vulnerable and was

attacked.

6. Airlines - Airplane pilots currently spend at least 30 minutes to

program their flight plan through a tedious manual data entry

procedure. Clearly speech recognition and more so WUW technology

10

are ideal solutions that would improve productivity of the pilot.

7. Other Uses - Other uses of WUW include the many situations where

it is impractical to provide manual input to computer system.

However, current speech recognizers are not accurate and robust

enough to accommodate the requirements of the problem.

1.3.2 Wake-Up-Word Definition

As explained in (V. Z. Këpuska and T. B. Klein) [1], WUW technology

solves three major problem areas:

1. Detecting WUW Context: The Wake-Up-Word is proposed as a

means to grab the computer’s attention with extremely high accuracy.

Unlike keyword spotting, the recognizer should not trigger on every

instance of the word, but rather only in certain contexts. For example,

if the Wake-Up-Word is “computer,” the WUW should not trigger if

spoken in a sentence such as “I am now going to use my computer.”

2. Identifying WUW: The Voice Activity Detector (VAD) is responsible

for finding utterances spoken in the correct context and segmenting

them from the rest of the audio stream. After the VAD makes a

decision, the next task of the system is to identify whether or not the

segmented utterance is a WUW.

11

3. Correct Rejection of Non-WUW: The final and critical task of a

WUW system is correctly rejecting Out-Of-Vocabulary (OOV) speech.

The WUW-SR system should have a correct rejection rate of virtually

100% while maintaining high correct recognition rates of over 99%.

1.3.3 WUW-SR Different from other SR Systems

Wake-Up-Word is often mistakenly compared to other speech

recognition tasks such as keyword spotting or command and control; but

WUW-SR is different from the previously mentioned tasks in several

significant ways. The most important characteristic of a WUW-SR system is

that it should guarantee virtually 100% correct rejection of non-WUW and

same words uttered in non-alerting context while maintaining correct

acceptance rate over 99%. This requirement sets WUW-SR apart from other

speech recognition systems because no existing system can guarantee 100%

reliability by any measure without significantly lowering its correct

recognition rate. It is this guarantee that allows WUW-SR to be used in novel

applications that previously have not been possible. Secondly, a WUW-SR

system should be context dependent; that is, it should detect only words

uttered in alerting context. Unlike keyword spotting, which tries to find a

specific keyword in any context, the WUW should only be recognized when

12

spoken in the specific context of grabbing the attention of the computer in

real time. Thus, WUW recognition can be viewed as a refined, albeit

significantly more difficult, keyword-spotting task. Finally, WUW-SR should

maintain high recognition rates in speaker-independent or speaker-

dependent mode and in various acoustic environments (V. Z. Këpuska and T.

B. Klein) [1].

1.3.4 Significant of WUW-SR

The reliability of WUW-SR opens up the world of speech recognition

to applications that were previously impossible. Today's speech-enabled

human-machine interfaces are still regarded with skepticism and people are

hesitant to entrust any significant or accuracy-critical tasks to a speech

recognizer.

Despite the fact that Speech Recognition is becoming almost

ubiquitous in the modern world, widely deployed in mobile phones,

automobiles, desktop, laptop, and palm computers, many handheld devices,

telephone systems, etc., the majority of the public pays little attention to

speech recognition. Moreover, the majority of speech recognizers use the

push to talk paradigm rather than continuously listening, simply because

they are not robust enough against false-positives. One can imagine that the

13

driver of a speech-enabled automobile would be quite unhappy if his or her

headlights suddenly turned off because the continuously listening speech

recognizer misunderstood a phrase in the conversation between driver and

passenger.

The accuracy of speech recognizers is often measured by Word Error

Rate (WER), which uses three measures, (Xuedong Huang, Alex Acero,

Hsiao-Wuen Hon) [2]:

 Insertion (INS) _ an extra word was inserted in the recognized

sentence.

 Deletion (DEL) _ a correct word was omitted in the recognized

sentence.

 Substitution (SUB) _ an incorrect word was substituted for a correct

word.

WER is defined as:

Substitution errors or equivalently correct recognition in WUW

context represent the accuracy of the recognition, while insertion + deletion

errors are caused by other factors; typically erroneous segmentation.

However, WER as an accuracy measurement is of limited usefulness to

a continuous listening command and control system. To understand why,

14

consider a struggling movie director who cannot afford a camera crew and

decides to install a robotic camera system instead.

The system is controlled by a speech recognizer that understands four

commands: “lights”, “camera”, “action”, and “cut”. The programmers of the

speech recognizer claim that it has 99% accuracy, and the director is eager to

try it out. When the director sets up the scene and utters “lights”, “camera”,

“action”, the recognizer makes no mistake, and the robotic lights and

cameras and spring into action. However, as the actors perform the dialogue

in their scene, the computer misrecognizes “cut” and stops the film, ruining

the scene and costing everyone their time and money. The actors could only

speak 100 words before the recognizer, which truly had 99% accuracy,

triggered a false acceptance.

This anecdote illustrates two important ideas. First, judging the

accuracy of a continuously listening system requires using a measure of

“rejection”. That is, the ability of the system to correctly reject out-of-

vocabulary utterances. The WER formula incorrectly assumes that all speech

utterances are targeted at the recognizer and that all speech arrives in

simple, consecutive sentences. Consequently, performance of WUW-SR is

measured in terms of correct acceptances (CA) and correct rejections (CR).

Because it is difficult to quantify and compare the number of CRs, rejection

15

performance is also given in terms of “false acceptances per hour”.

The second note of interest is that 99% rejection accuracy is actually a

very poor performance level for a continuously listening command and

control system. In fact, the 99% accuracy claim is a misleading figure. While

99% acceptance accuracy is impressive in terms of recognition performance,

99% rejection implies one false acceptance per 100 words of speech. It is not

uncommon for humans to speak hundreds of words per minute, and such a

system would trigger multiple false acceptances per minute. That is the

reason why today's speech recognizers: a) primarily use a “push to talk”

design and b) are limited to performing simple convenience functions and

are never relied on for critical tasks. On the other hand, experiments have

shown the WUW-SR implementation presented in Këpuska & Klein, 2009

work reach up to 99.99% rejection accuracy. That translates to one false

acceptance every 2.2 h (V. Z. Këpuska and T. B. Klein) [1].

1.3.5 Wake-Up-Word-SR Implementation

The concepts of WUW-SR have been most expanded in A novel

Wake-Up-word speech recognition system, Wake-Up-Word recognition task,

technology and evaluation (V. Z. Këpuska and T. B. Klein) [1]. Currently, the

system is implemented in C++ as well as JAVA. The WUW Speech Recognizer

16

consists of three stages. The first is front-end (audio signal preprocessing)

stage, described with VAD in more detail below as it is our goal in this

dissertation. It takes a speech waveform as its input, and extracts from it

three different sets of features: MFCC, LPC, and ENH-MFCC. Features

represent the information required to perform recognition in the back-end

stage S.P. Davis, P. Mermelstein) [14], (John Makhoul) [15].

The second stage is Voice Activity Detector (VAD), which is

performed using a set of statistical models called Hidden Markov Models

(HMM). VAD segments the signal into speech and non-speech regions.

The third stage is back-end. The back-end is responsible for classifying

observation sequences as in-vocabulary (INV), (i.e. the sequence of frames

hypothesized as a segment is a Wake-Up-Word), or out of vocabulary

(OOV), (i.e. the sequence is not a Wake-Up-Word). The WUW-SR system

uses a combination of HMM and Support Vector Machines (SVM) for

acoustic modeling and, as a result the back-end, consists of an HMM

recognizer and a SVM classifier. Prior to recognition, HMM and SVM models

must be created and trained for the word or phrase which is to be the wake-

up-word. When the VAD state changes from VAD_OFF to VAD_ON, the

HMM recognizer resets and prepares for a new observation sequence. As

long as the VAD state remains VAD_ON, feature vectors are continuously

17

passed to the HMM recognizer, where they are scored using the novel triple-

scoring method. If using multiple feature streams, recognition is performed

for each stream in parallel. When VAD state changes from VAD_ON to

VAD_OFF, multiple scores are obtained from the HMM recognizer and are

sent to the SVM classifier. SVM produces a classification score which is

compared against a threshold to make the final classification decision of INV

or OOV.

1.3.5.1 Front End Signal Processing

Front-end signal processing plays a crucial role in the realization of

speech recognition systems. This is the result of the fact that better signal

feature extraction leads to better recognition performance. The goal of front-

end signal processing is to extract relevant feature parameters of speech,

which are more suitable for the purpose of speech recognition than the input

speech waveform itself in terms of information rate and redundancy

reduction. Therefore, intensive efforts have been carried out to achieve a

high performance front-end. WUW-SR system makes use of the modulation

applied by the vocal tract (throat, tongue, teeth, lips and nasal cavity); the

excitation produced by the larynx is not used, even though humans infer

much information from it. (Note that in a number of Far-Eastern languages,

18

the inflection of a syllable can profoundly affect its meaning, requiring this

information to be retained, (Lee, L.S., Tseng, C.Y., Lin, Y.H., Lee, Y., Tu, S.L.,

Gu, H.Y., Liu, F.H., Chang, C.H., Hsieh, S.H., Chen, C.H. & Huang, K.R)) [16].

1.4 Field-Programmable Gate Arrays (FPGAs)

The field-programmable gate arrays (FPGA) is a semiconductor device

that can be programmed after manufacturing. Instead of being restricted to

any predetermined hardware function, an FPGA allows you to program

product features and functions, adapt to new standards and reconfigure

hardware for specific applications even after the product has been installed

in the field—hence the name "field-programmable". You can use an FPGA to

implement any logical function that an application-specific integrated circuit

(ASIC) could perform, but no ability to update the functionality after

shipping offers advantages for many applications.

Unlike previous generation FPGAs using I/Os with programmable

logic and interconnects, today's FPGAs consist of various mixes of

configurable embedded SRAM, high-speed transceivers, high-speed I/Os,

logic blocks, and routing. Specifically, an FPGA contains programmable logic

components called logic elements (LEs) and a hierarchy of reconfigurable

interconnects that allow the LEs to be physically connected. You can

19

configure LEs to perform complex combinational functions, or merely simple

logic gates like AND and XOR. In most FPGAs, the logic blocks also include

memory elements, which may be simple flip flops or more complete blocks of

memory.

As FPGAs continue to evolve, the devices have become more

integrated. Hard intellectual property (IP) blocks built into the FPGA fabric

provide rich functions while lowering power and cost and freeing up logic

resources for product differentiation. Newer FPGA families are being

developed with hard embedded processors, transforming the devices into

systems on a chip (SoC), (Altera, Inc) [17].

A field-programmable gate array (FPGA) is a form of programmable

logic device (PLD).It typically consists of a rectangular array of configurable

logic blocks (CLBs). Each CLB can contain assorted logic resources such as

look-up tables (LUTs) capable of implementing any desired Boolean function

and dedicated arithmetic logic such as carry chain logic, registers, latches,

shift registers, distributed memories, and so on.

The resources within a CLB can be configured as required. Similarly,

the data lines that link the resources within the CLB can be configured in

order to connect them together in particular ways. The CLB array itself is

immersed in a web of configurable routing, allowing the CLBs to be

20

connected in myriad ways.

There is currently a trend towards combining fixed-function logic

with reconfigurable logic, producing a so-called “system on a chip” (SoC).

This started with the inclusion of blocks of dedicated RAM — themselves

configurable with regard to the widths of their address and data buses — and

now includes dedicated multipliers, DSP blocks, and processor cores,

(Melnikoff, S.J) [18].

The field-programmable part of an FPGA comes from the fact that

FPGAs can be programmed and reprogrammed in situ, without having to be

removed from their target PCB and placed in a chip programmer every time a

new design needs to loaded, as is the case with some other types of

Programmable Logic Device (PLD). Most FPGAs are now SRAM based, and

so require a separate ROM to store their configuration data, as they are

unable to retain this data themselves when switched off. With so many

resources at the designer’s disposal, an FPGA provides a very powerful

platform for hardware development. Its flexibility allows for all manner of

complex designs; its numerous resources allow for a great deal of parallelism,

if the application allows it, and its ability to be reprogrammed without

limitation makes it an invaluable tool for hardware development. This is not,

however, the only thing that FPGAs are good for. Making ASICs is a very

21

expensive process, and as feature size shrinks, the cost of producing the die is

increasing.

The economics are such that a manufacturer needs to expect to ship a

very large number of chips before producing an ASIC becomes cost effective

which currently of the order of hundreds of thousands for the smaller feature

sizes, and continuing to rise, (Makimoto, T) [19], (Makimoto, T) [20]. For

smaller quantities, an FPGA or other PLD is cheaper. Additionally, an FPGA’s

in-system programmability can be put to other uses. Unlike an ASIC, the

FPGA’s design can be updated after the PCB has been made and populated

and after the product has been deployed; akin to software patches being

downloaded after a product has been shipped.

Taking this a stage further, one chip can be supplied with a library of

designs, enabling it to perform different functions depending on the

situation. For example, an FPGA could be used as part of a communications

subsystem, with different configurations for different protocols, allowing

hardware acceleration for all of them with just one chip.

Some FPGAs allow parts of the device to be reconfigured, while

leaving the rest of the chip untouched. The suggestion has therefore been

made for run-time reconfiguration (RTR) (e.g., (Laufer, R., Taylor, R.R. &

Schmit, H., “PCI-PipeRench and the SWORDAPI) [21], (Sezer, S., Heron, J.,

22

Woods, R., Turner, R. & Marshall, A)) [22], where some or all of the chip is

reprogrammed at run time, provides more processing power than might

otherwise be available.

Unfortunately, RTR has not been as successful as hoped for a number

of reasons. Firstly, the reconfiguration times for FPGAs, particularly the

larger ones, is along the order of milliseconds, which is a lifetime for devices

that can operate at hundreds of megahertz. To illustrate this, (James-Roxby

and Blodget) [23] use RTR to update the contents of LUTs configured as

ROMs, and compares this with the alternative of configuring them as RAMs

instead. The authors report that while the RAM-based design has a slower

clock-speed and uses more resources, the LUTs can be updated much faster,

by a factor of over 100.

Secondly, for partial reconfiguration, reprogramming one chunk of an

FPGA affects the routing in neighboring areas, and there is currently no

obvious solution as to how to deal with that. The problem can be sidestepped

by limiting the reconfiguration to replacing the contents of LUTs or RAM, or

by constraining the placement of logic resources so that no routing crosses

areas that will be reconfigured.

Thirdly, any complex chip relies heavily on the software that supports

it and current tools have limited support for RTR-based designs. FPGA

23

design software continues to improve, but still requires a lot of skill of the

designer. indeed, the question of whether adapting software languages in

order to make it easier for software engineers to produce FPGA designs (“C-

to-gates”) is an ongoing debate.

Additionally, a commercial slant is mentioned in, (IEE, “FPGAs not

ready to go embedded,” IEE Review, Institution of Electrical Engineers, April

2003) [24]: “There’s no market for reconfigurability [right now]. There is a

degree of reconfigurability in cellular systems, as in for changing the

protocols as you move between countries, but that is a specialist area and is

done by software. The case of design reconfigurability in hardware is yet to

be proved, as software is a pretty good way of achieving reconfigurability.”

At present, FPGAs’ power-hungry nature makes them unsuitable for

mobile devices. However, once that changes, their versatility and ability to be

repeatedly updated—even if only once in a while—could see them become

much more widespread than they are now, (Melnikoff, S.J) [18].

1.5 Motivation

Some motivations for building Automatic Speech Recognition (ASR)

systems, presented in order of difficulty, are to improve human-computer

interaction through spoken language interfaces, to solve difficult problems

24

such as speech-to-speech translation, and to build intelligent systems that

can process spoken language as proficiently as humans, (Ron Cole, Joseph

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen, Antonio

Zampolli, Victor Zue (Eds.)) [3]. Speech as a computer interface has

numerous benefits over traditional interfaces using mouse and keyboard:

speech is natural for humans and requires no special training, improves

multitasking by leaving the hands and eyes free, and is often faster and more

efficient to transmit than the information provided than using conventional

input methods. Human-machine interaction is likely to take place in natural

language in future embedded systems and mobile devices. Speech enabled

car navigation; natural language e-learning applications and home

automation are among those applications. This inherits all the embedded

systems design constraints to the speech recognition domain, like limited

hardware, memory, power consumption and cost, which creates the need to

re-architecture the already existing speech recognition systems (V. Z.

Këpuska and T. B. Klein) [1]. The-State-of-the-art WUW-SR is heading

towards embedded systems and hand-held devices. WUW-SR front-end

system architecture emerged to address these kinds of applications. The

existing implementation of this system is presented in software fashion, with

little consideration to the end product platform in which the system will be

25

deployed. In this dissertation, a hardware implementation of the front-end of

WUW-SR is specified and presented in FPGA platform prototype, with

consideration of migration to structure ASIC in case of mass production.

Finally: Why use an FPGA? It was originally suggested that this project

make use of an FPGA. While there are much excitement (in academic

circles, at least) that the FPGA’s unique ability to be reconfigured on the fly

could be put to great use, the challenge of doing so and the unlimited

support of the tools, combined with the ever-increasing quantity of resources

available on the device, has seen the idea pushed forward, the FPGA’s great

value has been shown in its use as a prototyping platform, either as a

stepping-stone on the path to an ASIC, or as an end in itself, where an ASIC

is either undesirable or uneconomical.

To conclude, even though processor power is always increasing, ASICs

and programmable logic devices are subject to the same improvements in

technology. Therefore, whatever we can improve using software; we should

also be able to improve by using hardware.

26

2 Speech Recognition System on Programmable Chip

It is only in the last few years that desktop PCs have been powerful

enough to allow large-vocabulary continuous speech recognition to be

performed in real time in software.

At present, for best results, systems still rely on being trained to

recognize one speaker, with minimal background noise. Even then, steps

have to be taken in order to reduce the computational complexity so that real

time recognition is feasible. Before this was possible, or when it was

necessary to try out more complex algorithms, only hardware had the

computational resources to achieve this.

Initially, hardware implementations tended to be based on parallel

arrays of one kind or another, often using custom chips. As the technology

has improved, the focus has shifted towards serial implementations, once

again making use of custom chips, microcontrollers or DSPs, since the

appearance of the FPGA has been used as an experimental platform

(Melnikoff, S.J) [18].

One of the three principal stages of the speech recognition process, it

is the decoding part that takes center stage in hardware implementations.

Pre-processing tends to be performed in software, or left to a DSP (G´omez-

27

Cipriano, J.L., Pizzatto Nunes, R., Bampi, S. & Barone, D (2001)) [25] use an

FPGA for feature extraction.

As a matter of fact, the increased processing power now offered by

processors and ASICs — not to mention the lower cost — has led to a shift

towards such devices.

(Shozakai (1999)) [26] uses an ASIC containing a DSP core for feature

extraction and Gaussian computations, and a RISC microprocessor core for

the Viterbi decoding. Tied mixture Gaussian mixtures are used, with 54

Japanese monophone HMMs, (Nakamura, K., Zhu, Q., Maruoka, S.,

Horiyama, T., Kimura, S. & Watanabe, K) (2001)) [27] describe an embedded

system incorporating an ASIC which also performs observation feature

extraction and Viterbi decoding. Discrete HMMs of 5 states each,

representing 64 monophones, are used. An FPGA is used for training. The

authors report that the hardware, running at 17 MHz, can perform

recognition in real time. They add that if their ASIC were operating at the

same speed as the processor used for testing equivalent software (Pentium III

750), the ASIC would be 5.3 times faster.

In contrast to this, , (Shi, Y.Y., Liu, J. & Liu, R.S) (2001) [28] employs an

ASIC containing an 8051 core for almost all the processing, including feature

extracting, with only the minimum of support logic (mainly for analogue-

28

digital conversion). The rationale of not using a DSP core is that they are

expensive in comparison—but the trade-off is the reduced processing power

available. The system performs both training and recognition. The authors

state that the chip is capable of accuracy above 90% for a constrained

vocabulary.

What is clear from these implementations is that, although a system-

on-chip design can recognize speech, current designs only have enough

processing power to cope with small vocabularies and the simpler types of

models.

2.1 Speech Recognition Software vs. Hardware Design

Providing a compromise between the processing power of hardware

and the flexibility of software, the emergence of FPGAs in the 1990s provided

a new platform for the development of speech recognition systems.

(Schmit & Thomas (1995)) [29] present an early FPGA implementation

of an HMM based application, on a Xilinx 4000-series device. In this case,

they use Viterbi decoding to correct errors made by a person typing,

resulting in a system 25 times faster than equivalent software.

(Vargas, F.L., Fagundes, R.D.R. & Junior, D.B (2001)) [30] uses two

Altera FPGAs to implement a simple isolated word recognition system. The

29

model uses up to 10 words, with 6 states per discrete HMM. They take

advantage of parallelism within the Viterbi algorithm to achieve a speedup

over software in the order of 500 times, with accuracies for this task

approaching 100%.

A novel implementation is demonstrated by (Jou, J.M., Shiau, Y.H. &

Huang, C.J. (2001)) [31] who proposed an “efficient VLSI architecture,”

prototyped on an FPGA. It takes advantage of the left-right nature of HMM

state machines used in speech recognition by merging every four columns of

the Viterbi trellis into one. The authors state that this approach saves on

time and resources. While this could be useful for faster-than-real-time

transcription, there is likely to be little gain when processing real-time

speech, as the system would have to wait for the same amount of time

between new observations whether it was processing one or four at a time.

(Stogiannos, P., Dollas, A. & Digalakis, V. (2000)) [32], based on

(Stogiannos, P (1999)) [33]. They use discrete-mixture HMMs, in which the

elements of the observation vector are quantized in advance, allowing the

probability associated with each element to be looked up in an off-chip

codebook, rather than calculated. These values (in the log domain) are then

summed, converted to the linear domain using another look-up, and further

summation takes place (as for Gaussian mixtures). The conversion back to

30

the log domain and the Viterbi decoding are performed in software. This

approach uses a lot of external RAM: 64 Mb of SDRAM for the codebook

values, and 512 Kb of SRAM for the domain conversion (organized as four 128

Kb LUT look-up tables).

In contrast, all but one of the designs (described later) use continuous

probability distributions, and computes the mixture components on the

FPGA. Use of an alternative algorithm removes the need for a domain

conversion for the mixture component summation, greatly reducing the large

storage and bandwidth requirements inherent in a RAM-based

implementation. In addition, the Viterbi decoding is performed in hardware.

In all cases, the designs take advantage of more recent devices which

are faster and have more resources available. The system is designed for an

Altera FLEX 10KE running at 66MHz.

As now, one of the key points is the use of FPGAs as a more cost-

effective solution for low-volume applications, though at the expense of

lower processing speeds as ASICs.

2.2 Commercial Speech Recognition Systems

A small number of commercial speech recognition ASICs are exist,

such as (Sensory’s RSC-300/RSC-364 and RSC4x family) [34], which use a

31

RISC microprocessor with a neural network; their Voice Direct 364, which is

also based on a neural network; and (Philips’ SBF1005 HelloIC) [35], which is

based on a DSP. All three are designed for applications requiring a small

vocabulary (typically 60 words or less), and boast a speaker-independent

recognition accuracy of 97% or more. (Further performance comparisons are

not possible due to a lack of suitable information).

While recognition chips and intellectual property (IP) cores only

handle small vocabularies,; their prevalence in toys, automotive applications

and mobile phones suggests that the market for such devices in embedded

and mobile systems will continue to increase as ,(Frostad, K.) [36], (Mozer, T)

[37] noted.

With regards to FPGAs, there are no cores designed specifically for

speech recognition. However, cores do exist for performing Viterbi decoding

for signal processing, such as those produced by (TILAB) [38] and (Xilinx)

[39]. In addition, some DSPs have dedicated logic for Viterbi decoding, like

the(Texas Instruments) [40] TMS320C6416, and the TMS320C54x family.

In both cases, however, these decoders are designed for signal

processing applications, which have different requirements from speech

recognition, including narrower data widths, different data formats, and

fewer states.

32

2.3 Alternative Speech Recognition Methods

The hidden Markov model is by far the dominant underlying

algorithm used in speech recognition systems, both commercially and in

research. However, there are alternatives that provide a useful comparison.

Dynamic time warping (DTW), (Cox, S.J) [41] predates HMMs, and is

in fact a special case of HMMs. It works by comparing two utterances,

stretching or compressing one (warping) in order to try and match it to the

other. The degree to which the utterance is warped determines a value

without transition probabilities, and with observation probabilities replaced

by a distance metric (typically Euclidean or “Manhattan”). This value must be

minimized in order to find the most likely match.

DTW was superseded by HMMs because the former provides less

flexibility, as it cannot be made more robust by training on large amounts of

data. Conversely, it has a use where data is limited, as a single utterance can

be used as a template in lieu of training data.

Its relative simplicity was of use when implemented by (Shi, Y.Y., Liu,

J. & Liu, R.S)(2001) [28], as described above.

Also mentioned earlier were neural networks. Rather than use any

particular algorithm, a neural network is trained on a set of template patterns

(e.g. a set of words used for command and control application). It is then

33

sent data extracted from incoming speech, and the data is compared to the

templates. The neural network selects the most likely template or number of

most likely candidates, with a final one being chosen after further processing.

Neural networks are simple to train, but their pattern-matching

abilities are limited. They are suitable for recognizing a small number of

isolated words, but they cannot cope with large-vocabulary continuous

speech. Their inherent parallelism, however, does make them suitable for

implementations in hardware, such as the FPGA version described by

(Eldredge, J.G. & Hutchings, B.L., “RRANN (1994)) [42]. A more general

approach is presented by (Chen, R. & Jamieson, L.H (1996)) [43].

Finally, a more unusual approach is introduced by (Bohez, E.L.J. &

Senevirathne, T.R (2001)) [44].

They use fractals for clustering phonemes, and report that this

method is good for endpoint detection and segmentation, but not dealing

with whole words. It is suggested that this method on its own is not suitable

for recognition, but could be used in conjunction with other techniques.

34

2.4 The-State-Of-The-Art Wake-Up-Word Speech Recognition

Having looked at how parts of the recognition process have been

implemented before, it is now time to propose new designs, inspired and

based on the theories described above.

Wake-Up-Word speech recognition system is a new paradigm in

speech recognition that is not yet widely recognized, WUW-SR is defined as

detection of a single word or phrase when spoken in the alerting context of

requesting attention, while rejecting all other words, phrases, sounds, noises

and other acoustic events and the same word or phrase spoken in non-

alerting context with virtually 100% accuracy.

Novel speech recognition technology named Wake-Up-Word (WUW)

(V. Këpuska) [6], (V. Këpuska) [7] bridges the gap between natural-language

and other voice recognition tasks (V. Këpuska, T. Klein) [8]. WUW-SR is a

highly efficient and accurate recognizer specializing in the detection of a

single word or phrase when spoken in the alerting or WUW context, (V.

Këpuska, D.S. Carstens, R. Wallace) [9] of requesting attention, while

rejecting all other words, phrases, sounds, noises and other acoustic events

with virtually 100% accuracy including the same word or phrase uttered in

non-alerting (referential) context. The WUW speech recognition task is

similar to keyword spotting; however, WUW-SR is different in one important

35

aspect: to the ability discriminates the specific word or phrase used only in

alerting context, not referential (e.g. conversational) context. Traditional

keyword spotters will not be able to discriminate between the two cases. The

discrimination will be only possible by deploying higher level natural-

language processing subsystem in order to discriminate between the two.

When deploying such solutions in applications it is nearly impossible to

determine, in real–time, if the user is speaking to the computer or about the

computer.

WUW speech recognizer is a highly efficient and accurate recognizer,

specializing in the detection of a single word or phrase when spoken in the

context of requesting attention (alerting), while rejecting the same word or

phrase spoken under referential (non-alerting) context. It rejects all other

words, phrases, sounds, noises and other acoustic events with virtually 100%

accuracy. This high accuracy enables development of speech recognition

driven interfaces that utilize dialogs using speech only.

One of the goals of speech recognition is to allow natural

communication between humans and computers via speech, (Ron Cole,

Joseph Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen,

Antonio Zampolli, Victor Zue (Eds.)) [3], where natural speech implies

similarity to the ways humans interact with each other on a daily basis. A

36

major obstacle to this is the fact that most systems today still rely to large

extent on non-speech input, such as pushing buttons or mouse clicking.

However, much like a human assistant, a natural speech interface must be

continuously listening and must be robust enough to recover from any

communication errors without non-speech intervention.

Speech recognizers deployed in continuously listening mode are

constantly monitoring acoustic input and do not necessarily require non-

speech activation. This contrasts with the push to talk model, in which

speech recognition is only activated when the user pushes a button.

Unfortunately, today's continuously listening speech recognizers are not

reliable enough due to their insufficient accuracy, especially in the area of

correct rejection. For example, such systems often respond erratically, even

when no speech is present. They sometimes interpret background noise as

speech, and they sometimes incorrectly assume that certain speech is

addressed at the speech recognizer when in fact it is targeted elsewhere

(context misunderstanding). These problems have traditionally been solved

by the push to talk model: requesting the user to push a button immediately

before or during talking or similar prompting paradigm.

Wake-Up-Word speech recognizers are often mistakenly compared to

other speech recognition tasks such as keyword spotting or command and

37

control, but WUW speech recognizer is different from the previously

mentioned tasks in several significant ways. The most important

characteristic of a WUW-SR system is that it should guarantee virtually 100%

correct rejection of non-WUW and same-words-uttered in non-alerting

context while maintaining correct acceptance rate over 99%. This

requirement sets apart WUW-SR from other speech recognition systems

because no existing system can guarantee 100% reliability by any measure

without significantly lowering correct recognition rate. It is guarantee that

allows WUW-SR to be used in novel applications that previously have not

been possible. Second, a WUW-SR system should be context dependent; that

is, it should detect only words uttered in alerting context. Unlike keyword

spotting, which tries to find a specific keyword in any context, the WUW

should only be recognized when spoken in the specific context of grabbing

the attention of the computer in real time. Thus, WUW speech recognition

system can be viewed as a refined keyword spotting task, albeit significantly

more sophisticated. Finally, WUW-SR should maintain high recognition

rates in speaker-independent or speaker-dependent mode and in various

acoustic environments (V. Z. Këpuska and T. B. Klein) [1].

38

2.4.1 Front End of Wake-Up-Word Speech Recognition

The concepts of WUW have been most recently expanded in (V. Z.

Këpuska and T. B. Klein) [1].Currently, the system is implemented in C++ as

well as JAVA, and provides three major components for achieving the goals

of WUW for use in a real-time environment: front-end, VAD, and back-end.

The front-end is responsible for extracting three different sets of features

from an input audio signal. The Voice Activity Detector (VAD) segments the

signal into speech and non-speech regions. Finally, the back-end performs

recognition and scoring.

The WUW Speech Recognizer is a very complex digital system. As

mentioned previously, the pre-processing can be done using FPGA, dedicated

DSPs, or in software. The backtracking process requires large amounts of

data storage, and indexing operations, for which software is better suited. It

is the recognition part (including Viterbi decoding), and in particular the

computation of observation probabilities, that requires a significant number

crunching and for which no suitable device currently exists. Therefore, the

front-end with built-in VAD has been the subject of our research resulting in

the hardware designs presented in this dissertation. In a typical automatic

speech recognition system, a signal processing front-end transforms the

speech waveform from an input device, such as a microphone, to a

39

parametric representation.

This parametric representation, often referred to as “features”, is then

used to drive the speech recognition decoder process. The generation of

MFCC is one of the most widely used algorithms (L. Rabiner and B. H. Juang)

[45], (S. Davis and P. Mermelstein) [46], (Ngoc-Vinh Vu, Jim

Whittington, Hua Ye, and John C. Devlin) [47] to implement a front-end.

Although there are some attempts to implement MFCC in hardware

(J.-C. Wang, J.-F. Wang, and Y.-S. Weng) [48], (W. Han, C.-F. Chan, C.-S.

Choy, and K.-P. Pun) [49], most existed work on MFCC tends to focus on the

improvement of the recognition performance. Since the core MFCC

algorithm requires a substantial amount of calculation, implementing it in

low-end hardware and keeping the design low-cost remains a challenge. In

(Nedevschi, S., Patra, R., Brewer, E) [50], and (Melnikoff, S., Quigley, S.F.,

Rusell, M. J) [51], presented only hardware implementations of some specific

part of algorithms for speech recognition or speaker identification that allow

a significant acceleration of the processing time.

In our research, we designed and implemented the front-end part of

the WUW-SR system in FPGA. We produced a new feature extraction system

based on the three different features: MFCC, LPCC, and Enhanced MFCC.

The proposed solution is optimized for modest resource usage, which makes

40

it suitable for a low-cost VLSI or FPGA device. This design not only has a

relatively low resource usage, but also maintains a reasonably high level of

performance.

41

3 Wake-Up-Word-SR System Architecture

The WUW Speech Recognizer is a complex system comprising of

three major parts: Front- end, VAD, and Back-end. The Front-end is

responsible for extracting three different sets of features from an input audio

signal. The VAD (Voice Activity Detector) segments the signal into speech

and non-speech regions. Finally, the back-end performs recognition and

scoring. The diagram below shows the overall procedure.

Figure 3.1 – Wake-Up-Word-Speech Recognition Overall Architecture

42

We present an experimental FPGA design and implementation of a

novel architecture of a real time feature extraction processor that generates

MFCC, LPC, and ENH_MFCC features simultaneously. In the WUW-SR

system, the recognizer front-end is located at the terminal which is typically

connected over a data network to remote back-end recognition (e.g., server).

The three sets of feature extraction of speech (MFCC, LPC, and ENH-MFCC)

are performed at the front-end. These extracted features are then

compressed and transmitted to the server via a dedicated channel, where

subsequently they are decoded.

The front-end system process takes an input pressure waveform

(audio signal) and output a sequence of characteristic parameters MFCCs,

LPCs, and ENH-MFCCs features. Whereas the back-end process, which is the

recognition component, takes the characteristic sequence and outputs an

index of the recognized command.

The signal processing module accepts raw audio samples and

produces spectral representations of short time (t) signals. The feature-

extraction module generates features from this spectral representation,

which are decoded with the corresponding hidden Markov models (HMMs).

The individual feature scores are classified using support vector machines

(SVMs). INV, OOV: in-, out-of-vocabulary speech.

43

3.1 Front End of Wake-Up-Word Speech Recognition

As shown in the diagram below the front-end processor is responsible

for extracting three different sets of features out of the input signal

simultaneously. These sets of features are extracted: Mel-filtered Cepstral

Coefficients (MFCC), LPC (Linear Predictive Coding) smoothed MFCCs, and

Enhanced MFCCs.

Figure 3.2 – Front-end, Voice Activity Detector, and Back-end

The following steps describe the feature extraction process:

1. Audio signal is converted from analog to digital

2. DC is filtered out and pre-emphasis filter is applied to signal

3. Audio signal is converted from integer to 32-bit floating point

format

44

4. Signal is windowed using 25ms Hamming window at a rate of 200

windows per second. At a sample rate of 8000 Hz this indicates a

window size of 200 samples, shifted by 40 samples each frame

5. Frame energy is computed and sent to VAD module

6. LPC, FFT, and magnitude squared spectrum are computed

7. Spectrum is sent to VAD module

8. Mel-filtering, discrete cosine transform are computed

9. MFCCs are sent to VAD module

10. Frames are buffered for a delay of 20-30 frames in order for VAD

to make a decision

11. VAD decision is used for MFCC enhancement process, ENH-MFCC

are computed

3.2 Voice Activity Detector (VAD) of WUW-SR

The Voice Activity Detector is responsible for segmenting the signal

into speech and non-speech segments as shown in Figure 3.3. For any given

frame, VAD reports one of two possible states: VAD_ON or VAD_OFF. Word

recognition in the Back-end stage begins when the VAD enters VAD_ON

state, and ends when the VAD switches to VAD_OFF. VAD works in two

phases. In the first phase, a classifier decides whether a single input frame is

45

speech-like or non-speech-like. In the second phase, the number of speech-

frames and non-speech-frames over a period of time is analyzed and certain

rules are applied to report the final decision of VAD_ON or VAD_OFF.

The following image shows “Onward” waveform as input audio data

superimposed with its VAD segmentation, its MFCC spectrogram, LPC

spectrogram, and enhanced-MFCC spectrogram.

Figure 3.3 – Speech signal with VAD segmentation, MFCC spectrogram, LPC

spectrogram, and ENH-MFCC spectrogram

3.2.1 First VAD Phase - Single Frame Speech/Non-Speech Classification

First, for every input frame VAD decides whether the frame is speech-

like or non-speech-like. Several hardware models have been implemented

and tested for solving this problem.

In the VAD design, the decision was made based on three features: log

energy difference (Energy Features), LPC spectral difference (LPC

46

Spectrogram Features), and MFCC difference (MFCC Features). A threshold

was determined empirically for each feature, and the frame was considered

speech-like if at least two out of the three features were above the threshold.

This was in effect a Decision Tree classifier, and the decision regions

consisted of hypercube in the feature space.

In order to improve the VAD classification accuracy, the VAD

implementation uses the three features: log energy difference, LPC spectral

difference, and MFCC difference; however, classification is performed using a

linear Support Vector Machine (SVM). There are several advantages over

using this method. First, the classification boundary in the feature space is a

hyper plane, which is more robust than the hypercube produced by the

decision tree method. Second, the thresholds do not have to be picked

manually but can be trained automatically (and optimally) using marked

input files. Third, the sensitivity can be adjusted in smooth increments using

a single parameter, the SVM decision threshold. Recall that the output of a

SVM is a single scalar, . Usually the decision threshold is set

at , but it can be adjusted in either direction depending on the

requirements. Finally, the linear SVM kernel is extremely efficient, because

classification of new data requires just a single dot product computation.

47

3.2.2 Second VAD Phase – Final Decision Logic

In the second phase, the VAD keeps track of the amount of frames

marked as speech and non-speech and makes a final decision. There are four

parameters:

MIN_VAD_ON_COUNT, MIN_VAD_OFF_COUNT, LEAD_COUNT, and

TRAIL_COUNT.

The logic requires a number of consecutive frames to be marked as

speech in order to set its state to VAD_ON, specified by

MIN_VAD_ON_COUNT, and a number of consecutive frames to be marked

as non-speech in order to set its state to VAD_OFF, specified by

MIN_VAD_OFF_COUNT.

Because the classifier can make mistakes at the beginning and the

end, the logic also includes a lead-in and a trail-out time. After the minimum

number of consecutive speech frames has been observed VAD does not

indicate VAD_ON for the first of those frames, but rather several frames

earlier, a number specified by LEAD_COUNT. Similarly, when the minimum

number of non-speech frames has been observed, VAD waits an additional

number of frames before changing to VAD_OFF, specified by

TRAIL_COUNT.

48

3.3 Back End of WUW-SR

Front-end of WUW-SR is responsible for generating three sets of

features MFCC, LPC, and ENH-MFCC. These features are needed to be

decoded with corresponding Hidden Markov Models (HMMs) in the back-

end stage of the WUW-SR (e.g., server). The Back-end is responsible for

classifying observation sequences as In Vocabulary (INV), i.e. the sequence is

a Wake-Up-Word, and Out Of Vocabulary (OOV), i.e. the sequence is not a

Wake-Up-Word.

The WUW-SR system uses a combination of Hidden Markov Models

and Support Vector Machines for acoustic modeling, and as a result the back-

end consists of an HMM recognizer and a SVM classifier. Prior to

recognition, HMM and SVM models must be created and trained for the

word or phrase which is to be the Wake-Up-Word.

When the VAD state changes from VAD_OFF to VAD_ON, the HMM

recognizer resets and prepares for a new observation sequence. As long as the

VAD state remains VAD_ON, feature vectors are continuously passed to the

HMM recognizer, where they are scored using the triple scoring method. If

using multiple feature streams, recognition is performed for each stream in

parallel. When VAD state changes from VAD_ON to VAD_OFF, multiple

scores are obtained from the HMM recognizer and are sent to the SVM

49

classifier. SVM produces a classification score which is compared against a

threshold to make the final classification decision of INV or OOV.

50

4 Front End System Design

Automatic speech recognition systems are usually implemented on

personal computers equipped with high-performance microprocessors. This

is because of the computation complexity of applied algorithms, as well as

their high confidential levels of security. General purpose processors contain

floating-point units able to carry out millions of operations per second at

frequencies in the GHz range, which allows for a resolution of the complex

algorithms in just a few hundred of milliseconds. However, in the low-cost

consumer market, such factors as price, power consumption and size

determine the viability of a product.

Since the main drawback of microprocessors based systems are the

cost, and the necessary space required to incorporate their external

associated peripherals, the use of an FPGA (Field Programmable Gate Arrays)

is a better suited way to implement systems that require a high

computational capability at an affordable price. Additionally, the FPGA

allows dividing and implementing algorithm as parallel parts, which allows

running computation at lower operational circuit frequency and requires less

power consumption. FPGA circuits can be programmed by the user and

adapted to perform the particular task. The term "programming," in case of

51

FPGA architecture, means changing its internal structure. The programming

can also be repeated multiple times. The mechanism that allows for FPGA

programming, on the one hand, decreases the operating speed of the FPGA

chip comparing to ASIC. On the other hand, it provides the opportunity to

tune-up the system to the specific parameters of the implemented algorithm

(Staworko, M.; Rawski, M) [52].

4.1 Features Extraction

The WUW-SR problem can be roughly divided into two issues: speech

analysis (feature extraction) and classification. Feature extraction methods

are responsible for reducing the resources required to describe speech

samples accurately. In case of speech analysis, various digital signal

processing (DSP) algorithms are used to detect desired features of input

speech signal. The most common algorithms are LPCC, MFCC, LFCC and

others. MFCC is recognized as the best known and most popular. However,

the LFCC algorithm is often used in speaker identification applications, since

it produces results of comparable quality (D. A. Reynolds) [53],

(A.Kaczmarek, M.Staworko) [54], (Charbuillet, C., Gas, B., Chetouani, M.,

Zarader J.L) [55]. In our work, we aim to design and implement a novel

WUW’s front-end processor on FPGA to generate three different sets of

52

features:

 Mel-frequency Cepstral Coefficients (MFCC)

 Linear predictive Coding Coefficients (LPC)

 Enhanced Mel-frequency Cepstral Coefficients (ENH-MFCC)

4.1.1 Mel-scale Frequency Cepstral Coefficients (MFCC)

The feature extraction involves identifying the formants in the speech,

which represent the frequency locations of energy concentrations in the

speaker’s vocal tract. There are many different approaches used: Mel-scale

Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC),

Linear Prediction Cepstral Coefficients (LPCC), Reflection Coefficients (RCs).

Among these, MFCC has been found to be more robust in the presence of

background noise compared to other algorithms (S. Davis and P.

Mermelstein) [56]. Also, it offers the best trade-offs between performance

and size (memory) requirements. The primary reason for effectiveness of

MFCC is that, it models the non-linear auditory response of the human ear

which resolves frequencies on a log scale (H. Combrinck and E. Botha) [57].

4.1.2 Autocorrelation Linear Predictive Coding (LPC)

The basic idea of LPC is to approximate the current speech sample as

a linear combination of past samples as shown in the following equation:

53

 : Previous speech samples

 : Order of the model

 : Prediction coefficient

 : Prediction error

This module gets windowed data from the window module for

representing the spectral envelope of a digital signal of speech in compressed

form, using the information of a linear predictive model. We use this method

to encode good quality speech and provide an estimate of speech parameters.

The goal of this method is to calculate prediction coefficients for each

frame. The order of LPC, which is the number of coefficients , determines

how closely the prediction coefficients can approximate the original

spectrum. As the order increases, the accuracy of LPC also increases. This

means the distortion will decrease. The main advantage of LPC is usually

attributed to the all-pole characteristics of vowel spectra. Also, the ear is also

more sensitive to spectral poles than zeros (M. R. Schroeder) [58].

In comparison to non-parametric spectral modeling techniques such

as filter banks, LPC is more powerful in compressing the spectral information

into few filter coefficients (K. K. Paliwal and W. B. Kleijn) [59].

54

4.1.3 Enhanced Mel-scale Frequency Cepstral Coefficients (ENH-MFCC)

The spectrum enhancement module is designed to generate ENH-

MFCC features. We have implemented this module to perform an

enhancement algorithm on the LPC spectrum signal. The ENH-MFCC

features have a higher dynamic range than regular MFCC features, so these

new features will help the back-end in improving the recognition quality and

accuracy (V. Z. Këpuska and T. B. Klein) [1].

4.2 System Architecture

Front-end part of the novel Wake-Up-Word speech recognition

system is designed and implemented on FPGA as efficient implementation of

a complete system on a programmable chip (SOPC). Our design will get an

impetus with the advent of high-density FPGAs integrated with high-capacity

RAMs and the availability of implementation support for soft-core

processors, such as the Nios II processor.

FPGAs enable the best of both worlds to be used gainfully for an

application: the microcontroller and RISC processor is efficient for

performing control and decision-making operations, while the FPGA

efficiently performs digital signal processing (DSP) operations and other

computation intensive tasks as will be explained later in this dissertation.

55

We produced efficient hardware front-end system with an FPGA

acting as processor that is capable of generating three different sets of

features (MFCC, LPCC, and ENH-MFCC) at much faster rate than software.

Implementation of systems using an Altera-based system on a programmable

chip enables time-critical functions to be implemented in hardware

synthesized with Verilog HDL code.

 As shown in the diagram below, front-end takes audio signal and

processes it as a quantized digitized waveform through a sequence of very

complex DSP modules to generate a sequence of 39-dimensions

 12-dimensions MFCC plus 1-dimension power

 12-dimensions LPCC plus 1-dimension power

 12-dimensions ENH-MFCC plus 1-dimension power

as the base feature for each frame, that can be used in the back-end

model, each vector representing the information in a small time

window of the signal. This feature is then extended to 39-dimensions

for every feature type by augmenting first-order and second-order

time derivatives, in order to capture the transition of the spectrum.

56

Figure 4.1 – Front-end of WUW-SR Block Diagram

4.3 Front End with Built-in VAD Architecture

The following diagram illustrates the architecture of the Front-end

with Voice Activity Detector. Five blue-colored modules represent the Voice

Activity Detector stage. The VAD is responsible for finding utterances

57

spoken in the correct context and segmenting them from the rest of the

audio stream, then the system will identify whether or not the segmented

utterance is a WUW. As shown in the diagram below, the design is divided

into twenty seven-modules (five-stages).

Figure 4.2 – Front-end of WUW-SR with VAD Block Diagram

58

Pre-Processing stage:

The first seven yellow-colored modules represent the pre-processing

stage and are used as the basic modules to provide windowed speech signal

to the other stages.

1. Analog to Digital Converter ADC

2. DC Filtering

3. Serial to 32-bit parallel converter

4. Integer to floating-point converter

5. Pre-emphasis filtering

6. Window advance buffering

7. Hamming window

Linear Predictive Coding Coefficients stage:

Five brown-colored modules represent the Linear Predictive Coding

Coefficients (LPC) stage and are used to generate 13-Linear Predictive Coding

features.

1. Autocorrelation Linear Predictive Coding

2. Fast Fourier Transform FFT

3. LPC Spectrogram

4. Mel-scale Filtering

5. Discrete Cosine Transform DCT

59

Mel-Frequency Cepstral Coefficients stage:

Four pink-colored modules represent the MFCC stage and are used to

generate 13 MFCCs features.

1. Fast Fourier Transform FFT

2. MFCC Spectrogram

3. Mel-scale Filtering

4. Discrete Cosine Transform DCT

Enhanced Mel-Frequency Cepstral Coefficients stage:

Four green-colored modules represent the ENH-MFCC stage and are

used to generate 13 ENH-MFCC features.

1. Enhanced Spectrum (ENH)

2. Enhanced MFCC Spectrogram

3. Mel-scale Filtering

4. Discrete Cosine Transform DCT

Voice Activity Detector stage:

Four red-colored modules represent the Voice Activity Detector

(VAD) stage. The VAD is responsible for finding utterances spoken in the

correct context and segmenting them from the rest of the audio stream, then

the system will identify whether or not the segmented utterance is a WUW.

1. Spectrogram features

60

2. Energy features

3. MFCC features

4. Voice activity detection logic VAD

4.4 Design Function Description

The goal of front-end signal processing is to extract relevant feature

parameters of speech, which are more suitable for the purpose of speech

recognition than the input speech waveform itself in terms of information

rate and redundancy reduction. Intensive efforts have been carried out to

achieve a high performance front-end. Converting a speech waveform into a

form suitable for processing by the decoder requires several stages as follows:

1. Filtration: The waveform is sent through a low pass filter, typically 4

kHz to 8 kHz. As is evidenced by the bandwidth of the telephone

system being around 4 kHz; this is sufficient for comprehension and

used a minimum bandwidth required for telephony transmittal.

2. Analog-to-Digital Conversion: The process of digitizing and

quantizing an analog speech waveform begin with this stage. Recall

that the first step in processing speech is to convert the analog

representations (first air pressure, and then analog electric signals

from a microphone), into a digital signal.

61

3. Sampling Rate: The resulting waveform is sampled. Sampling rate

theory requires a sampling (Nyquist) rate of double the maximum

frequency (so 8 to 16 kHz as appropriate). The sampling rate of 8 kHz

was used in our front-end. (We used CODEC Chip to perform first,

second, and third stages).

4. Serial to Parallel Converter: This model gets serial digital signal

from CODEC and converts it to 32-bit.

5. Integer to floating-point converter: This module converts 32-bit,

signed integer data to single-precision (32-bit) floating-point values.

The input data is routed through the int_2_float Megafunction core

named ALTFP_CONVERT.

6. Pre-emphasis: The digitalized speech signal s(n) is put through a

low-order LPF to spectrally flatten the signal and to make it less

susceptible to finite precision effects later in the signal processing.

The filter is represented by:

y[n] = x[n] – αx [n-1],

Output = Input – (PRE_EMPH_FACTOR * Previous_input).

The value of PRE_EMPH_FACTOR (α) where chosen as 0.975.

7. Window Buffering: A 32-bit, 256 deep dual-port RAM (DPRAM)

stores 256 input samples. A state machine handles moving audio data

62

into the RAM, and pulling data out of the RAM (40 samples) to be

multiplied by the Hamming coefficients, which are stored in a ROM

memory.

8. Windowing: The hamming window function smoothes the input

audio data with a Hamming curve prior to the FFT function. This

stage slices the input signal into discrete time segments. This is done

by using window N milliseconds, typically 25 ms wide (200 samples).

A Hamming window size of 25 ms which consists of 200 samples at 8

KHz sampling frequency and 5 ms frame shift (40 samples) is picked

for our front-end windowing.

9. Fast Fourier Transform: In order to map the sound data from the

time domain to the frequency domain, the Altera IP Megafunction

FFT module is used. The module is configured so as to produce a 256-

point FFT. This function is capable of taking a streaming data input in

natural order, and it can also output the transformed data in natural

order, with maximum latency of 256 clock cycles once all the data (256

data samples) has been received.

10. Spectrogram: This module takes the complex data generated by the

FFT and performs the function:

20 * log10 (fft_real2 + fft_imag2)

63

We designed spectrogram to show how the spectral density of a signal

varies with time. We used spectrogram module to identify phonetic

sounds. Digitally sampled data, in the time domain, are broken up

into chunks, which usually overlap, and Fourier transformed to

calculate the magnitude of the frequency spectrum for each chunk.

Each chunk then corresponds to a vertical line in the image; a

measurement of magnitude versus frequency for a specific moment

in time. The spectrums or time plots are then "laid side by side" to

form the image surface.

11. Mel-scale Filtering: While the resulting spectrum of the FFT

contains information in each frequency in linear scale, human hearing

is less sensitive at frequencies above 1000 Hz. This concept also has a

direct effect on performance of ASR systems; therefore, the spectrum

is warped using a logarithmic Mel scale. In order to create this effect

on the FFT spectrum, a bank of filters is constructed with filters

distributed equally below 1000 Hz and spaced logarithmically above

1000 Hz.

12. Discrete Cosine Transform: DCT is a Fourier-related transform

similar to the discrete Fourier transform (DFT), but using only real

numbers. DCTs are equivalent to DFTs of roughly twice the length,

64

operating on real data with even symmetry (since the Fourier

transform of a real and even function is real and even). A DCT

computes a sequence of data points in terms of summation of cosine

functions oscillating at various frequencies. The idea of performing

DCT on Mel Scale is motivated by extraction of the speech frequency

domain characteristics. DCT module reduces the speech signal’s

redundant information, and reaches the aim of regulating the speech

signal into feature coefficients with minimal dimensions.

13. Enhanced Spectrum: This module gets the spectrogram from LPC

and statistical information from the VAD and generates a new

enhanced and smoothed Mel-frequency Cepstral Coefficients (ENH-

MFCC).

14. Feature Representation: Speech recognition is a computationally

demanding task. Particularly the stage of feature extraction, which is

responsible for reducing the resources required to describe speech

samples accurately and requires algorithms of large complexity.

Normally, speech signal is converted into a parameterized sequence of

feature vectors by front-end processing to emphasize the

characteristics of spoken words and suppress other irrelevant

information. Typical features used in continuous speech recognition

65

include Linear predictive Coding Coefficients (LPCC), Mel-frequency

Cepstral Coefficients (MFCC) and Perceptual Linear Predictive

Coefficients (PLP). Some of them are motivated by the nature of

human hearing. For the experiments described in this dissertation, the

outputs of our front-end are sequences of vectors composed of

features:

 Mel-frequency Cepstral Coefficients (MFCC)

 Linear Predictive Coding Coefficients (LPC)

 Enhanced Mel-frequency Cepstral Coefficients (ENH-MFCC)

66

5 Front End Hardware Implementation

5.1 System Design Environment

5.1.1 Hardware Design Tools

The FPGA development boards used in our design are ALTERA DE2

Development Board with (Cyclone II FPGA) and DSP Development Kit with

(Cyclone III FPGA). The earlier designs are implemented on the ALTERA

DE2 Development Board and as the design gets larger and more complex we

used (DSP Development Kit with Cyclone III FPGA). In both cases the

designs are written in Verilog HDL.

The Cyclone® III DSP development board provides a hardware

platform for developing and prototyping low-power, high-volume, and

feature-rich designs and to demonstrate the Cyclone III device’s on-chip

memory, embedded multipliers, and the Nios® II embedded processor.

With up to 4 M bits of embedded memory and 288 embedded 18-bit ×

18-bit multipliers, the Cyclone III device supplies internal memory while also

provides external support for high-speed, low-latency memory access via

dual-channel DDR SDRAM and low-power SRAM.

Cyclone III devices are designed to provide low static and dynamic

power consumption. Additionally, with the support of the Quartus® II

67

software’s PowerPlay technology, designs are automatically optimized for

power consumption. Therefore, the Cyclone III development board provides

a power-optimized, integrated solution for memory-intensive, high-volume

applications. The Cyclone III Development Kit features the EP3C120F780

device (U20) in a 780-pin BGA package. The board contains two HSMC

(High-Speed Mezzanine Cards) interfaces called Port A and Port B. These

HSMC interfaces support both single-ended and differential signaling. The

HSMC interface also allows for JTAG, SMBus, clock outputs and inputs, as

well as power for compatible HSMC cards. The HSMC is an Altera-developed

specification, which allows users to expand the functionality of the

development board through the addition of daughter cards (HSMC cards),

(Altera, Inc) [17].

Cyclone® III device family offers a unique combination of high

functionality, low power and low cost. Based on Taiwan Semiconductor

Manufacturing Company (TSMC) low-power (LP) process technology, silicon

optimizations and software features to minimize power consumption,

Cyclone III device family provides the ideal solution for high-volume, low-

power, and cost-sensitive applications. To address the unique design needs,

Cyclone III device family offers the following two variants:

68

 Cyclone III—lowest power, high functionality with the lowest cost

 Cyclone III LS—lowest power FPGAs with security

With densities ranging from about 5,000 to 200,000 logic elements

(119,088 LEs) and 0.5 Megabits to 8 Mb of memory (3,981,312 Byte) for less

than ¼ watt of static power consumption, Cyclone III device family makes it

easier for you to meet your power budget. Cyclone III LS devices are the first

to implement a suite of security features at the silicon, software, and

intellectual property (IP) level on a low-power and high-functionality FPGA

platform. This suite of security features protects the IP from tampering,

reverse engineering and cloning. In addition, Cyclone III LS devices support

design separation which enables you to introduce redundancy in a single

chip to reduce size, weight, and power of your application (Altera, Inc)

[17].The TLV320AIC23 is a high-performance stereo audio codec with highly

integrated analog functionality. The analog-to-digital converters (ADCs) and

digital-to-analog converters (DACs) within the TLV320AIC23 use multi bit

sigma-delta technology with integrated oversampling digital interpolation

filters. Data-transfer word lengths of 16, 20, 24, and 32 bits, with sample rates

from 8 kHz to 96 kHz, are supported. The ADC sigma-delta modulator

features third-order multibit architecture with up to 90-dBA signal-to-noise

ratio (SNR) at audio sampling rates up to 96 kHz, enabling high-fidelity

69

audio recording in a compact, power-saving design. The DAC sigma-delta

modulator features a second-order multibit architecture with up to 100-dBA

SNR at audio sampling rates up to 96 kHz, enabling high-quality digital

audio-playback capability, while consuming less than 23 mw during playback

only (Texas Instruments) [60].

5.1.2 Software Design Tools

5.1.2.1 Quartus II 64-bits

Quartus II is a software tool produced by Altera for analysis and

synthesis of HDL designs, which enables the developer to compile their

designs, perform timing analysis, examine RTL diagrams, simulate a design's

reaction to different stimuli, and configure the target device with the

programmer. The Quartus II software is the leading design software for

performance and productivity. It is the only complete design solution for

CPLDs, FPGAs, and ASICs in the industry; it is a comprehensive environment

for system-on-a-programmable-chip (SOPC) design. The Quartus II software

includes an integrated development environment to accelerate system-level

design and seamless integration with leading third-party software tools and

flows (Altera, Design Software) [61].

70

5.1.2.2 ModelSim Altera

Mentor Graphics ModelSim® HDL Simulator is a source-level

verification tool, allowing you to verify HDL code line by line. You can

perform simulation at all levels: behavioral (pre-synthesis), structural (post-

synthesis), and back-annotated, dynamic simulation.

Coupled with the most popular HDL debugging capabilities in the

industry, ModelSim is known for delivering high performance, ease of use,

and outstanding product support.

Graphical user interface enables you to quickly identify and debug

problems, aided by dynamically updated windows. Once a problem is found,

you can edit, recompile, and re-simulate without leaving the simulator.

ModelSim fully supports current VHDL and Verilog HDL language

standards. You can simulate behavioral, RTL, and gate-level code separately

or simultaneously. ModelSim supports all Altera FPGA libraries, ensuring

accurate timing simulations (Mentor Graphic, ModelSim Software) [62].

5.2 Front End System Architecture

The Front-end design is broken down into four stages to achieve a

high performance design:

 Mel-scale Frequency Cepstral Coefficient (MFCC)

71

 Autocorrelation Linear Predictive Coding (LPC)

 Enhanced Mel-scale Frequency Cepstral Coefficient (ENH-MFCC)

 Voice Activity Detector (VAD)

Converting a speech waveform into three different sets of

spectrograms and features:

 Mel-scale Frequency Cepstral Coefficient (MFCC)

 Autocorrelation Linear Predictive Coding (LPC)

 Enhanced Mel-scale Frequency Cepstral Coefficient (ENH-MFCC)

The following diagram illustrates the architecture of the Front-end

and VAD. Blue colored models represent VAD models.

72

Figure 5.1 – Front-End of WUW-SR Architecture Block Diagram

5.2.1 MFCC Front End Subsystem Implementation

As shown in the diagram below, we begin with the process of

digitizing and quantizing an analog speech waveform. Recall that the first

73

step in processing speech is to convert the analog representations (first air

pressure, and then analog electric signals in a microphone), into a digital

signal. This process of analog-to-digital conversion has two steps:

 Sampling

 Quantization

A signal is sampled by measuring its amplitude at a particular time;

the sampling rate is the number of samples taken per second. In order to

accurately measure a wave, it is necessary to have at least two samples in

each cycle: one measuring the positive part of the wave and one measuring

the negative part. More than two samples per cycle increases the amplitude

accuracy, but less than two samples will cause the frequency of the wave to

be completely missed. Thus the maximum frequency wave that can be

measured is one whose frequency is half the sample rate (since every cycle

needs two samples). This maximum frequency for a given sampling rate is

called the Nyquist frequency.

In any signal processing and digital audio, quantization is the process of

approximating a continuous range of values (or a very large set of possible discrete

values) by a relatively small set of discrete symbols or integer values

(http://en.wikipedia.org/wiki/Quantization_(sound_processing) #Audio_ quantization)

[63].

74

Figure 5.2 – MFCC Front-end Subsystem

The first building block includes two modules (ADC module & DC

Filtering module). The speech acquisition contains a microphone and a

CODEC from which digitized speech data are generated. To perform analog

to digital conversion and DC filtering we designed controller module to

control the CODEC and acquire the digital data from it, using the

specification given by the Philips for I2C protocol & DSP operation mode of

CODEC on the Cyclone® III FPGA [EP3C120F780]. A controller was designed

using Verilog HDL to perform two operations: I2C protocol operation to

drive the Audio CODEC [TLV320AIC23], and sound fetching from Audio

CODEC [TLV320AIC23] to FPGA in DSP mode.

As shown in the figure below, the (tlv320_codec_spi_ctrl) module has

been created in the design: the I2C bus controller, virtual sound fetcher, and

the clock module. The FPGA communicates with the CODEC via the I2C

(Inter-Integrated Circuit) protocol using two pins: 'SDIN' (the data line), and

75

'SCLK' (the bus clock). I2C bus controller modifies internal settings of

CODEC, de-mute the microphone input, boost the microphone volume, and

change the default sound path (giving the microphone priority over other

inputs). After the CODEC digitalizes the input it puts the digital data on a

digital audio interface, to fetch the data on SDATA_IN of codec from digital

audio interface. DSP operation mode is used in the design. SDATA_IN is the

formatted digital audio data stream with left and right channels multiplexed

together. LRCOUT (alignment clock) and BCLK (synchronization clock) is

used to fetch the data on SDATA_IN. This data can be used for any sound

application. The clock module is designed to generate different clock

requirements for the controller. CODEC internal registers sittings:

 Generate reset, delay after command.

 Sample Rate Control: USB Mode, SR = 8 KHz, no clock dividers.

 Digital Audio Interface Format: Master DSP format, 32-bit word

length.

 Analog Audio Path Control: Side stone disabled, DAC enabled,

Bypass disabled, INSEL = line-in, MIC muted, no Mic boost.

 Analog Audio Path Control: Sidestone disabled, DAC enabled,

Bypass disabled, INSEL = MIC, MIC not muted, no Mic boost.

76

 Power Down Control: Turn on everything.

 Digital Audio Path Control: Disable DAC soft mute, enable ADC

HPF (DC Filtering).

 Digital Interface Activation: Activate digital audio interface.

 Left Line In Volume Control: LRS=1, Mute off, volume = 0dB.

 Right Line In Volume Control: LRS=1, Mute off, volume = 0dB.

5.2.1.1 CODEC Audio Data Interface

This is the interface to the audio CODEC which receives Analog-to-

Digital Converter (ADC) data from the CODEC and sends Digital-to-Analog

Converter (DAC) data to the CODEC. The interface operates in DSP mode

only and assumes that the CODEC is the transfer master (the CODEC

generates the BCLK and L/R clocks.) In DSP mode, the CODEC generates a

single clock pulse on the LRCLK_in signal and data is shifted in/out on the

subsequent clocks. The CODEC shifts ADC data out on the falling edge of

BCLK (CODEC_BCLK_in) as MSB first, so the ADC data

(CODEC_SDATA_in) is registered on the rising edge of BCLK in the interface

logic. Likewise, the CODEC registers DAC data (CODEC_SDATA_out) on

the rising edge of BCLK, so the interface logic shifts DAC data out on the

falling edge.

77

The interface is designed to send/receive 16, 20, 24 or 32-bit wide data

to/from the CODEC. The 2-bit input (WORDLENGTH_SEL_in) determines

the number of bits to shift per channel: 00 = 16-bit, 01 = 20-bit, 10 = 24-bit, 11

= 32-bit. The output ADC_DATA_out contains the parallel left and right data

from the CODEC. Depending on the selected word length the output data is

formatted as:

Word length Left Channel Data Right Channel Data

16 ADC_DATA_out[31:16] ADC_DATA_out[15:0]

20 ADC_DATA_out[39:20] ADC_DATA_out[19:0]

24 ADC_DATA_out[47:24] ADC_DATA_out[23:0]

32 ADC_DATA_out[63:32] ADC_DATA_out[31:0]

A single BCLK data valid pulse (ADC_DV_out) is generated when all

bits are registered. The DAC data interface is designed to read data out of a

FIFO, so the signal DAC_FIFO_RDEN_out generates a single BCLK read-

enable pulse (if DAC_FIFO_EMPTY_in is not active) at the end of each

transfer to retrieve the next DAC words. Since the DAC data is sent MSB

first, the input data must be formatted accordingly for the selected word

length:

78

Word length Left Channel Data Right Channel Data

16 DAC_DATA_in[63:48] DAC_DATA_in[47:32]

 20 DAC_DATA_in[63:44] DAC_DATA_in[43:24]

24 DAC_DATA_in[63:40] DAC_DATA_in[39:16]

32 DAC_DATA_in[63:32] DAC_DATA_in[31:0]

5.2.1.2 Serial-to-Parallel & Integer-to-Floating Point Converter

We used floating-point converter (ALTFP_CONVERT) Megafunction

core to design this module. This operation converts integer bits to the IEEE-

754 floating-point representation. Conversions of signed integers to floating-

point numbers in single precision are used in this module. All floating-point

formats are implemented as shown in the figure below.

Figure 5.3 – IEEE-754 Single-precision Floating-point Representation

 S: Represents a sign bit

 E: Represents an exponent field

 M: Represents the mantissa (part of a logarithm or fraction) field

For a single-precision floating-point number, the most significant bit

(MSB) is a sign bit, followed by eight intermediate bits to represent an

exponent and 23 least significant bits (LSBs) to represent the mantissa. As a

79

result, the total width for a single-precision floating-point number is 32 bits.

The bias for the representation is 127. The advantage of using floating-point

numbers is that they can represent a much larger range of values. In a fixed-

point number representation, the radix point is always at the same location.

Although the fixed radix point simplifies numeric operations and conserves

memory, it limits the magnitude and precision of the number representation.

In situations that require a large range of numbers or high resolution, a

reloadable radix point is desirable. In the floating-point format, very large or

very small numbers can be represented.

5.2.1.3 Pre-emphasis Filter

Prior to the core feature-extraction component, there is one more

stage of pre-processing that is necessary to be carried out. This pre-emphasis

phase is basically a high-pass filter that increases the relative energy of the

high frequency spectrum. The characteristics of the vocal tract define the

properties of speech. Although possessing relevant information, how

frequency formants contain high concentrations of energy relative to high

frequency formants. As shown in the figure below, the digitized speech signal

goes through a pre-emphasis process, which performs spectral flattening

with a first-order FIR filter described by:

80

y[n] = x[n] – αx [n-1]

Output = Input – (PRE_EMPH_FACTOR * Previous input)

Where n is the sample index and α = 0.975 the filter coefficient used.

Figure 5.4 – Pre-emphasis Function

This module is used to amplify energy in the high-frequencies of the

input speech signal. This allows information in these regions to be more

recognizable during HMMs training and recognition.

5.2.1.4 Hamming Window & Advance Buffering

For advance buffering we used A 32-bit, 256 deep dual-ports RAM

(DPRAM) to store 256 input samples. A state machine handles moving audio

data into the RAM, and pulling data out of the RAM (40 samples) to be

multiplied by the Hamming coefficients, which are stored in a ROM memory.

81

The Hamming window function smoothes the input audio data with a

Hamming curve prior to the FFT function. This stage slices the input signal

into discrete time segments. This is done by using window typically 25 ms

wide (200 samples). A Hamming window size of 25 ms which consists of 200

samples at 8 KHz sampling frequency and 5 ms frame shift (40 samples) is

picked for our front-end windowing. The diagram and equation below show

hamming window function.

Figure 5.5 - Hamming Window

A 32-bit, 256 deep dual-port RAM (DPRAM) stores 200 input samples.

A state machine handles moving audio data into the RAM, and pulling data

out of the RAM to be multiplied by the Hamming coefficients, which are

stored in a ROM memory. The ROM initialization file was created using a

82

MATLAB script, which uses the MATLAB function "hamming" to generate

the 200 data points and convert them to hexadecimal, 32-bit, single precision

floating-point values. The script writes the initialization file for the

Megafunction IP and also a file used for the test bench.

The state machine first stores 40 incoming audio samples in the RAM

and decrementing to a specific location (this mimics a FIFO). Once the 40

samples have been stored, the state machine pulls data out of the RAM

(oldest sample first). This data is multiplied by the corresponding Hamming

coefficient from the ROM. The result of the multiplication is stored in a

FIFO for use by the FFT. The state machine accounts for the latency of the

multiplication core. Simultaneously, the data in the RAM is shifted up in the

memory by 40 locations (the upper 40 words are discarded), leaving the

bottom 40 words open for the next set of audio samples.

To summarize, each FFT calculation is a weighted average of present

and past audio samples. The figure below shows speech signal before and

after applying hamming window.

83

Figure 5.6 - Speech Signal before and after applying Hamming Window

5.2.1.5 Fast Fourier Transform

In order to map the sound data from the time domain to the

frequency domain, the Altera IP Megafunction FFT module is used. The

module is configured so as to produce a 256-point FFT. This function is

capable of taking a streaming data input in natural order, and it can also

output the transformed data in natural order, with maximum latency of 256

clock cycles once all the data (256 data samples) has been received.

The FFT interface module instantiates a single-precision FFT of length

256. The architecture of the FFT is variable-streaming, natural-order in and

out and supports an inverse FFT function as well. A state machine reads data

84

out of the hamming window FIFO when it is full and streams this data into

the FFT. The streaming output of the FFT writes the complex data (real &

imaginary) into separate 256 x 32-bit FIFOs for extraction by the spectrogram

function.

As shown in the figure below, FFT used to transform the speech signal

into frequency domain, where the most important speech/speaker

information resides. The windowed time domain samples are converted into

frequency domain by discrete fourier transform. The frequency-domain

samples generally have complex values. Only the real magnitudes were used

in our design.

Figure 5.7 - Windowed Speech to Fourier Transform

5.2.1.6 MFCC Spectrogram

A spectrogram is a time-varying spectral representation (forming an

image) that shows how the spectral density of a signal varies with time. Also

85

known as spectral waterfalls, sonograms, voiceprints (or voicegrams), and

spectrograms are used to identify phonetic sounds, to analyze the cries of

animals; they were also used in many other fields including music,

sonar/radar, speech processing, seismology, etc. The instrument that

generates a spectrogram is called a spectrograph. This module takes the

complex data generated by the FFT and performs the function below:

20 * log10 (fft_real² + fft_imag²)

We designed spectrogram to show how the spectral density of a signal

varies with time. We used spectrogram module to identify phonetic sounds.

Digitally sampled data, in the time domain, are broken up into chunks,

which usually overlap, and Fourier transformed to calculate the magnitude of

the frequency spectrum for each chunk. Each chunk then corresponds to a

vertical line in the image; a measurement of magnitude versus frequency for

a specific moment in time. The spectrums or time plots are then "laid side by

side" to form the image surface.

The figures below shows waveform (speech signal) for words

“Onward” and “Voyager” with 8 KHz sampling rate and its MFCC

spectrograms representation generated by the Front End module.

This module reads the real and imaginary FFT data from the FIFOs

whenever data is available. The real data is multiplied by itself through a

86

floating-point multiply Megafunction core and the imaginary data is

multiplied by itself through another core. The results of these multiplies are

routed to the inputs of the floating-point adder. The result of the adder is

then routed to the input of the floating-point log Megafunction. Altera's log

Megafunction actually calculates the natural log of the input.

To scale the final result to log10, the output of the log function is

multiplied by 20 / ln (10) - this is a constant value of 0x410AF967 (8.685889).

A counter is used to compensate for the latency of the Megafunctions

(generate the FFT FIFO read-enables and the spectrogram output write-

enable).

Figure 5.8 - MFCC Hardware Front-end Spectrogram for the word “Onward”

Figure 5.9 - MFCC Hardware Front-end Spectrogram for the word “Voyager”

87

5.2.1.7 Mel-scale Filtering

While the resulting spectrum of the FFT contains information in each

frequency in linear scale, human hearing is less sensitive at frequencies above

1000 Hz. This concept also has a direct effect on performance of ASR systems;

therefore, the spectrum is warped using a logarithmic Mel-scale as shown in

the figure. . In order to create this effect on the FFT spectrum, a bank of

filters is constructed with filters distributed equally below 1000 Hz and

spaced logarithmically above 1000 Hz. Mel-scale filter was computed using

the function below:

mel (f) = 1127 ln (1+f / 700)

Figure 5.10 - Mel-scale Function

The figure below shows Mel-scale filter bank using triangular filters.

The output of filtering the FFT signal by each Mel-scale filter is known as the

Mel-spectrum.

88

Figure 5.11 - Mel-scale Bank Filter

5.2.1.8 Discrete Cosine Transform

DCT is a Fourier-related transform similar to the discrete Fourier

transform (DFT), but using only real numbers. DCTs are equivalent to DFTs

of roughly twice the length, operating on real data with even symmetry

(since the Fourier transform of a real and even function is real and even).

A DCT computes a sequence of data points in terms of summation of

cosine functions oscillating at various frequencies. The idea of performing

DCT on Mel-scale is motivated by extraction of the speech frequency domain

characteristics. DCT module reduces the speech signal’s redundant

89

information, and reaches the aim of regulating the speech signal into feature

coefficients with minimal dimensions.

The DCT of the Mel-scale is computed, resulting in the spectrum. This

representation is valuable because it separates characteristics of the source

and vocal tract from the speech waveform.

5.2.1.9 MFCC Features

The stage of feature extraction is responsible for reducing the

resources required to describe speech samples accurately and requires

algorithms of large complexity. Normally, speech signal is converted into a

parameterized sequence of feature vectors by front-end processing to

emphasize the characteristics of spoken words and suppress other irrelevant

information.The front-end takes audio signal and processes it as a quantized

digitized waveform through a sequence of very complex DSP modules to

generate a sequence of 39-dimensions

 12-dimensions MFCC plus 1-dimension power

 12-dimensions LPC plus 1-dimension power

 12-dimensions ENH-MFCC plus 1-dimension power

as the base feature for each frame, that can be used in the back-end model,

each vector representing the information in a small time window of the

90

signal. This feature is then extended to 39-dimensions for every feature type

by augmenting first-order and second-order time derivatives, in order to

capture the transition of the spectrum.

The figures below show waveform (speech signal) for the word

“Voyager” with 8 KHz sampling rate and its MFCC features generated by the

Front-end module.

Figure 5.12 - MFCC Hardware Front-end Features (12-Coefficients)

Figure 5.13 - MFCC Hardware Front-end Features (11-Coefficients)

5.2.2 LPC Front End Subsystem Implementation

As shown in the diagram below, an additional module named

Autocorrelation Linear Productive Coding (LPC) used to extract the speech

91

as LPC features. The basic idea of LPC is to approximate the current speech

sample as a linear combination of past samples as shown in the following

equation:

Where x[n-k]: Previous speech samples

 p: Order of the model

 ak: Prediction coefficient

 e[n]: Prediction error

Figure 5.14 – LPC Front-end Subsystem

LPC module gets windowed data from the window module for

representing the spectral envelope of a digital signal of speech in compressed

92

form, using the information of a linear predictive model. We use this method

to encode good quality speech and provide an estimate of speech parameters.

The goal of this method is to calculate prediction coefficients for

each frame. The order of LPC, which is the number of coefficients ,

determines how closely the prediction coefficients can approximate the

original spectrum. As the order increases, the accuracy of LPC also increases.

This means the distortion will decrease. The main advantage of LPC is

usually attributed to the all-pole characteristics of vowel spectra. Also, the

ear is also more sensitive to spectral poles than zeros (M. R. Schroeder) [64].

In comparison to non-parametric spectral modeling techniques such as filter

banks, LPC is more powerful in compressing the spectral information into

few filter coefficients (K. K. Paliwal and W. B. Kleijn) [65].

5.2.2.1 LPC Spectrogram

The figures below shows waveform (speech signal) for the words

“Onward” and “Voyager” with 8 KHz sampling rate and its LPC spectrogram

representation generated by the Front End module.

We used the same MFCC spectrogram function to generate LPC

spectrogram:

20 * log10 (fft_real² + fft_imag²)

93

Figure 5.15 - LPC Hardware Front-end Spectrogram for the word “Onward”

Figure 5.16 - LPC Hardware Front-end Spectrogram for the word “Voyager”

This module reads the real and imaginary FFT data from the FIFOs

whenever data is available. The real data is multiplied by itself through a

floating-point multiply Megafunction core and the imaginary data is

multiplied by itself through another core. The results of these multiplies are

routed to the inputs of the floating-point adder. The result of the adder is

then routed to the input of the floating-point log Megafunction. Altera's log

Megafunction actually calculates the natural log of the input.

94

5.2.2.2 LPC Features

The figures below show waveform (speech signal) with 8 KHz

sampling rate and its 12-Coefficients (Figure 5.17) & 11-Coefficients (Figure

5.18) LPC features generated by the Front-end module.

Figure 5.17 - LPC Hardware Front-end Features (12-Coefficients)

 Figure 5.18 - LPC Hardware Front-end Features (11-Coefficients)

5.2.3 ENH-MFCC Front End Subsystem Implementation

The spectrum enhancement module is used to generate enhanced

Mel-scale Frequency Cepstral Coefficients (ENH-MFCC) set of features. We

implemented this module as shown in the diagram below to perform the

enhancement algorithm on the LPC spectrum signal.

95

The ENH-MFCC features have a higher dynamic range than regular

MFCC features, so these new generated features will help the back-end in

improving the recognition quality and accuracy.

The equations below show the enhanced Mel-scale Frequency

Cepstral Coefficients (ENH-MFCC) algorithm. The algorithm uses only the

single-sided spectrum, so the state machine starts the calculations when 128

data points have been written into the input RAM.

xi = ci yi + bi e(xi) = e(yi)

Where:

 xi = corrupted signal

 yi = pure signal

 ci = noise

 bi = background noise

Enhanced Spectrum = Input LPC Spectrum / Global Information

(Average) + Local Information (Average) + Estimated Background.

96

Figure 5.19 – ENH-MFCC Front-end Subsystem

5.2.3.1 ENH-MFCC Spectrogram

The figures below show waveforms (speech signals) for the words

“Onward” and “Voyager” with 8 KHz sampling rate and its LPC spectrogram

representation generated by the Front End module.

We used the same MFCC spectrogram function to generate LPC

spectrogram:

20 * log10 (fft_real² + fft_imag²)

97

Figure 5.20 - ENH-MFCC Hardware Front-end Spectrogram for the word “Onward”

Figure 5.21 - ENH-MFCC Hardware Front-end Spectrogram for the word “Voyager”

5.2.3.2 ENH-MFCC Features

The figures below show waveform (speech signal) with 8 KHz

sampling rate and its 12-Coefficients (Figure 5.21) & 11-Coefficients (Figure

5.22) LPC features generated by the Front End module.

Figure 5.22 - ENH-MFCC Hardware Front-end Features (12-Coefficients)

98

Figure 5.23 - ENH-MFCC Hardware Front-end Features (11-Coefficients)

5.2.4 Voice Activity Detector Implementation

There are various kinds of voice that may contain actual speech or

background noise. In our Front-end of WUW Speech Recognition System it

is imperative to monitor and detect any speech signal for efficient usage by

the Back-end stage. To achieve speech / non-speech detection, as shown in

fig (5.24) we designed and implemented Voice Activity Detector (VAD)

models. The VAD continuously monitors system and calculates for every

frame if the signal is a speech signal or a background noise. VAD used three

inputs (Log Energy, LPC Features, and MFCC Features) to decide whether to

turn VAD ON or VAD OFF. Those features are finely tuned to detect any

voice in the speech frame. Each feature has an independent detection

method. Depending on the calculations done by the features, the overall

VAD logic reacts by turning the VAD output on/off (Speech or Noise

Background). Each feature calculates the presence of speech by calculating

Variance and Mean deviation. Each feature has its own flag to be set. Each

99

feature is finely tuned to meet certain criteria before its feature flag is set.

Once all these flags are true, the overall logic of VAD triggers and the VAD

turns on.

Figure 5.24 – Voice Activity Detector Modules

5.2.4.1 Log Energy Feature

The Energy feature uses the change in mean frame energy to detect if

there is speech in the frame. If there is a drastic change in frame energy the

Energy flag is set. This feature function receives the frame energy parameter

(log2_frame_energy) from the Hamming Window module. It uses this each

new frame energy to calculate the overall frame energy mean and compare it

to the present frame energy. Mean frame energy (mean_log2_fm_en) is

100

dependent on a variable called lambda (lambda_LTE) which is calculated

differently in the first few frames. The mean is ignored during the VAD ON

stage and is stored in a different variable (mean_log2_fm_en_VAD_ON). If the

difference between the mean frame energy and the current frame energy is

greater than certain threshold (SNR_THRESHOLD_VAD), the Energy flag is set.

5.2.4.2 Mel-frequency Cepstral Coefficient Feature

The Mel-frequency Cepstral Coefficients are used to calculate current

frame feature value based on the values in the MFCC vector. When the mean

(mean_vad_mfcc_feature) of all the frames measured is over the current

frame MFCC feature value (local_aver_mfcc_fea_val), the flag is set

(VAD_MFCC_State_Flag). The mean is calculated differently depending on the

frame counter and the behavior of the system. It dynamically changes to

adapt to the system so it can detect the signal in a better way. For example,

the mean for the first fifteen frames is equal to the current frame MFCC value

or the overall mean up to that point whichever is of higher value. The mean

is slowed down if the current frame feature value is too low compared to the

mean calculated up to that point. The mean is ignored during the stage

where VAD is turned ON and is stored into a different variable

(mean_vad_mfcc_feature_VAD_ON).

101

5.2.4.3 Leaner Predictive Coding Feature

Leaner Predictive Coding Spectrum feature function is different from

the aforementioned features mainly because it is uses the variance to detect

if a signal is present. The values in the vector are calculated and the variance

for each individual frame is stored. When the current variance (var_spec) is

much larger than the average variance (aver_var_spec) of the previous

frames, it indicates that there is speech or not in the frame. The average

variance is changes based on how much the current value varies. If the

current variance value is really low then it indicates that the signal dint

change a lot so the overall average doesn’t change much either. The variance

flag (VAD_SPEC_State_Flag) is set when there is a sudden change in variance

when compared to previous frames and is turned off if the change is minimal.

6 Results and Comparisons

Having Front-end and Voice Activity Detector of WUW designed,

implemented, and running on FPGA, it is now necessary to compare and

evaluate it with WUW-SR system designed with C++ software and running

on personal computer, to prove that both hardware and software WUW-SR

systems are working identical.

102

The experiment results from intermediate stages of the hardware

front-end process as well as spectrograms and features are presented, and the

results produced by the implementations have been presented.

6.1 CODEC Audio Data Interface

Module: codec_dsp_interface.v

Megafunction Cores: None

This is the interface to the audio CODEC which receives ADC data

from the CODEC and sends DAC data to the CODEC. The interface operates

in DSP mode only and assumes that the CODEC is the transfer master (the

CODEC generates the BCLK and L/R clocks.) In DSP mode, the CODEC

generates a single clock pulse on the LRCLK_in signal; data is shifted in/out

on the subsequent clocks. The CODEC shifts ADC data out on the falling

edge of BCLK (CODEC_BCLK_in) as MSB first, so the ADC data

(CODEC_SDATA_in) is registered on the rising edge of BCLK in the interface

logic. Likewise, the CODEC registers DAC data (CODEC_SDATA_out) on

the rising edge of BCLK, so the interface logic shifts DAC data out on the

falling edge.

The interface is designed to send/receive 16, 20, 24 or 32-bit wide data

to/from the CODEC. The 2-bit input (WORDLENGTH_SEL_in) determines

103

the number of bits to shift per channel: 00 = 16-bit, 01 = 20-bit, 10 = 24-bit, 11

= 32-bit. The output ADC_DATA_out contains the parallel left and right data

from the CODEC. Depending on the selected wordlength the output data is

formatted as:

Wordlength Left Channel Data Right Channel Data

16 ADC_DATA_out[31:16] ADC_DATA_out[15:0]

20 ADC_DATA_out[39:20] ADC_DATA_out[19:0]

24 ADC_DATA_out[47:24] ADC_DATA_out[23:0]

32 ADC_DATA_out[63:31] ADC_DATA_out[31:0]

A single BCLK data valid pulse (ADC_DV_out) is generated when all

bits are registered. The DAC data interface is designed to read data out of a

FIFO, so the signal DAC_FIFO_RDEN_out generates a single BCLK read

enable pulse (if DAC_FIFO_EMPTY_in is not active) at the end of each

transfer to retrieve the next DAC words. Since the DAC data is sent MSB

first, the input data must be formatted accordingly for the selected

wordlength.

Wordlength Left Channel Data Right Channel Data

16 DAC_DATA_in[63:48] DAC_DATA_in[47:32]

20 DAC_DATA_in[63:44] DAC_DATA_in[43:24]

24 DAC_DATA_in[63:40] DAC_DATA_in[39:16]

104

32 DAC_DATA_in[63:32] DAC_DATA_in[31:0]

Testbench: tb_codec_dsp_interface.v

 The CODEC interface testbench verifies that the module

receives ADC data and transmits DAC data correctly. Each wordlength is

tested. The testbench reports any errors and issues a test pass/fail message

at the end of the test.

Figure 6.1 – CODEC DSP Interface Simulation Waveforms

6.2 Integer-to-Floating-Point Function

Module: int16_to_float32_wrapper.v

Megafunction Cores: ALTFP_CONVERT (int_2_float.v)

This module converts 16-bit, signed integer data to single-precision

(32-bit) floating point values. The input data is simply routed through the

int_2_float.v Megafunction core. The latency of the core is 6 clocks. The

105

dv_dly_sr.v module instantiates an 8 clock shift register to delay the

AUDIO_DV_in (audio data valid) input to the FP_DV_out (floating-point

data valid) signal to allow for the latency of the conversion.

Testbench: tb_int16_to_float32_wrapper.v

The integer-to-floating-point testbench writes the following signed,

16-bit integers into the module under test: -32767, -16384, -1, 0, 1 16384, 32768.

These values represent the full range of the expected input data. The

testbench determines if the correct floating-point values are generated by the

module under test. The MATLAB script tb_int2float.m was written to verify

the correct hexadecimal, single-precision, floating-point outputs. Any

failures are flagged and a pass/fail message is displayed at the end of the test.

MATLAB script tb_int2float.m: This M-File displays the integers and the

corresponding floating-point values used for the int2float verilog /

megafunction test bench. The output of tb_int2float.m script:

a =

 32767 16384 1 0 -1 -16384 -32768

b =

 46fffe00 46800000 3f800000 00000000 bf800000

 c6800000 c7000000

106

Figure 6.2 – 16-bit Integer-to-32bit Floating-point Simulation Waveforms

6.3 Pre-Emphasis Function

Module: pre_emphasis.v

Megafunction Cores: ALTFP_MULT (mult_float_32.v)

 ALTFP_ADD_SUB (add_sub_float_32.v)

The pre-emphasis function performs the following algorithm:

output = input - PRE_EMPH_FACTOR * previous_input

When input data is valid (DV_in), the input data (DATA_in) is

registered as the input_sample. At the same time, the previous input_sample

is registered as prev_sample. The prev_sample data is multiplied by the

PRE_EMPH_FACTOR (0.975, or 0x3F79999A) using the mult_float_32.v

107

Megafunction. The output of the multiplication is then subtracted from

input_sample by the add_sub_float_32.v Megafunction. The latency of the

multiplier is 11 clocks and the latency of the subtract is 7 clocks. A 19-clock

delay is applied to DV_in to generate DV_out (data valid out) to allow for the

latencies of the cores.

Testbench: tb_pre_emphasis.v

The pre-emphasis function testbench uses the same test values as the

integer-to-float testbench, except in floating point notation. The test values

are written in and the output values are compared against the know answers

to verify module under test operation. Any failures are flagged and a

pass/fail message is displayed at the end of the test.

A MATLAB script (tb_preemphasis.m) was written to generate the

expected output values for testbench comparison.

The output of: tb_preemphasis.m script

result =

 46fffe00 c6732f4e c679959a bf79999a bf800000 c67ffc1a

 c6833333

108

Figure 6.3 – Pre_emphasis Filter Simulation Waveforms

6.4 Hamming Window Function

Module: hamming_window.v

Megafunction Cores: ALTFP_MULT (mult_float_32.v)

 ROM: 1-PORT (rom_256x32bits_hamcoef.v)

 RAM: 2-PORT (dpram_256x32bits.v)

The Hamming window function smoothes the input audio data with a

Hamming curve prior to the FFT function. A 32-bit, 256 deep dual-port RAM

(DPRAM) stores 200 input samples. A state machine handles moving audio

data into the RAM, and pulling data out of the RAM to be multiplied by the

Hamming coefficients, which are stored in a ROM memory. The ROM

initialization file was created using a MATLAB script, hamming_coef.m,

109

which uses the MATLAB function "hamming" to generate the 200 data points

and convert them to hexadecimal, 32-bit, single precision floating point

values. The script writes the initialization file for the Megafunction IP and

also a file used for the testbench.

The state machine first stores 40 incoming audio samples in the RAM,

starting at address 0x3F and decrementing to location 0x00 (this mimics a

FIFO). Once the 40 samples have been stored, the state machine pulls data

out of the RAM starting at location 0xFF (oldest sample first), decrementing

to 0x00. This data is multiplied by the corresponding Hamming coefficient

from the ROM. The result of the multiplication is stored in a FIFO for use by

the FFT. The state machine accounts for the latency of the multiplication

core. Simultaneously, the data in the RAM is shifted up in the memory by 40

locations (the upper 40 words are discarded). So the previous contents from

0x00 to 0xBF are moved to 0x40 to 0xFF, leaving the bottom 40 words open

for the next set of audio samples.

To summarize, each FFT calculation is a weighted average of present

and past audio samples.

Testbench: tb_hamming_win.v

The Hamming window testbench writes the value of 1 (0x3F800000)

200 times into the SAMPLE_DATA_in input of the Hamming window

110

module. This will cause all of the internal multiplications of the Hamming

coefficient ROM data to be multiplied by 1. When the input RAM is

completely filled, the output FIFO should contain the values of the ROM.

The input data is written in 40 words at a time and then the testbench

waits for the FIFO full output to be true. The testbench will then read the

FIFO data. The fourth time the FIFO is read, the FIFO output data is

compared to the data in the file "tb_ham_coef.txt", which holds the

Hamming window coefficients used to initialize the Hamming window

lookup table ROM.

The testbench will report that all data has passed, if that is the case.

Otherwise, the errors will be reported. The testbench also has a Modelsim

wave file, wave_ham_win.do, with test signals. The analog test signal is an

analog representation of the FIFO output data. After the fourth read from

the FIFO, the analog data should show the Hamming window curve.

111

Figure 6.4 – Hamming window Simulation waveforms

6.5 Fast Fourier Transform (FFT) Function

Module: fft_interface.v

Megafunction Cores: FFT (fft_256.v)

 FIFO (sync_fifo_256x32bits.v)

The FFT interface module instantiates a single-precision, FFT of

length 256 (actually 2^3 to 2^8). The architecture of the FFT is variable

streaming, natural order in and out and supports an inverse FFT function as

well. A state machine reads data out of the Hamming window FIFO when it

is full and streams this data into the FFT. The streaming output of the FFT

writes the complex data (real & imaginary) into separate 256 x 32-bit FIFOs

112

for extraction by the spectrogram function.

Testbench: fft_256_tb.v

The Megafunction FFT wizard automatically generates a testbench for

the FFT. This testbench only tests the FFT megafunction, not the FFT

interface module. The testbench writes input data for various FFT lengths

from the text files "fft_256_real_input.txt" and "fft_256_imag_input.txt" and

generates "fft_256_real_output_ver.txt" and "fft_256_imag_output_ver.txt".

Two other files are also generated: "fft_256_blksize_report.txt", which

contains the FFT data for each test and "fft_256_inverse_report.txt", which

contains the inverse (1) or normal (0) selection for each test. The testbench

runs four sets of data in this order of lengths: 256, 16, 256, 16. No inverse

FFTs are simulated.

The FFT Megafunction wizard also generates a MATLAB simulation

for the FFT model (the files are "fft_256_tb.m" and "fft_256_model.m".) This

simulation reads the FFT input data text files and the block report and

inverse report text files from the Verilog simulation and generates the output

"fft_256_real_output_c_model.txt" and "fft_256_imag_output_c_model.txt".

The MATLAB script "tb_fft_result_compare.m" compares the outputs of the

MATLAB model and the simulation for discrepancies.

113

Figure 6.5 – FFT Simulation Waveforms

6.6 Spectrogram Function

Module: spectrogram.v

Megafunction Cores: ALTFP_MULT (mult_float_32.v) x 3

 ALTFP_ADD_SUB (add_sub_float_32.v)

 ALTFP_LOG (log_float_32.v)

This module takes the complex data generated by the FFT and

performs the algorithm:

20 * log10 (fft_real² + fft_imag²)

114

which is the spectrogram output. The module reads the real and imaginary

FFT data from the FIFOs whenever data is available. The real data is

multiplied by itself through a floating-point multiply Megafunction core, the

imaginary data is multiplied by itself through another. The results of these

multiplies are routed to the inputs of the floating point adder. The result of

the adder is then routed to the input of the floating-point log Megafunction.

Altera's log Megafunction actually calculates the natural log of the input; to

scale the final result to log10, the output of the log function is multiplied by

20 / ln(10) - this is a constant value of 0x410AF967 (8.685889).

A counter is used to compensate for the latency of the Megafunctions

(generate the FFT FIFO read enables and the spectrogram output write

enable.)

Testbench: tb_spectrogram.v

The spectrogram testbench reads the files generated by the FFT

testbench, "fft_256_real_output_ver.txt" and "fft_256_imag_output_ver.txt"

as input to the spectrogram module. The testbench also reads the text file

"spec_ver_data.txt", which is created by the MATLAB script

“tb_spec_ver_gen.m". The MATLAB script reads the same FFT output text

files and calculates the spectrogram value. The verilog testbench compares

the DUT output to the data in "spec_ver_data.txt" to verify that the data

115

matches. Due to rounding differences between MATLAB and the

Megafunction cores, there is a slight difference between the values. The

testbench reports differences of one or two counts.

Figure 6.6 – Spectrogram Simulation Waveforms

6.7 Linear Predictive Coding (LPC) Function

Module: lpc_module.v

Megafunction Cores: ALTFP_MULT (mult_float_32.v) x 3

 ALTFP_ADD_SUB (add_sub_float_32.v)

 ALTFP_DIV (div_float_32.v)

 RAM: 2-PORT (dpram_256x32bits.v)

 RAM: 2-PORT (dpram_32x32bits.v) (x3)

 FIFO (sync_fifo_256x32bits.v)

116

This module calculates the Linear Predictive Coding coefficients of the

post Hamming Window audio data. In the Hamming Window module, when

the windowed data is being written into the FFT FIFO, the data is also

written out of the Hamming Window module into the LPC module via the

HAM_DATA_in and HAM_DV_in inputs. The data is written into a RAM

block in the LPC Module.

When 256 data points are written, a state machine in the LPC module

begins calculation of the LPC coefficients. The state machine runs the LPC

calculations in this order: (1) Calculate Auto-Correlation coefficients, (2)

Calculate the LPC Levinson-Durbin coefficients, (3) Store the LPC

coefficients in a FIFO to be read by the FFT module. All of the algorithms'

calculations share the floating-point Megafunction cores. The state machine

sets a calculation select value (calc_sel) which control muxes for the core's

inputs for current calculation. A counter (calc_wait) is used by the state

machine to wait for the cores to complete their calculations.

Auto-Correlation Calculation

Once the input RAM is filled with data from the Hamming window,

the state machine will begin executing the auto-correlation coefficient (acc)

calculation. The first state of this process initializes the RAM contents from

the previous calculations. The S_INIT_RAM state writes zeros into the auto-

117

correlation, temp and LPC coefficient DPRAMs. When all RAMs have been

initialized the algorithm indices are set to zero, as well as the auto-

correlation sum (acc_sum) and the auto-correlation function is set for

calc_sel. Each auto-correlation coefficient is then calculated as the sum...

for j = 0 to 17

 for i = 0 to 255

 acc_sum = acc_sum + (sample_data[i] * sample_data[i+j])

 next i

 acc_ram[j] = acc_sum

next j

The states S_AC_READ_OFFSET, S_WAIT_FOR_AC_DATA,

S_AC_CALC_WAIT, S_AC_NEXT_WAIT perform and store the auto-

correlation coefficients in RAM. When the ACC calculation is complete the

state machine will advance to the beginning state for LPC calculation

(S_START_LD_ALG).

LPC Calculation

The LPC coefficients require several calculations for each coefficient.

In state S_START_LD_ALG, the first auto-correlation coefficient is read from

the RAM and stored as the first LPC coefficient (lpc_ram[0] = acc_ram[0])

and the first alpha value. The i and j indices are set to 1 and the state

118

machine advances to S_START_S_CALC. The i index keeps tracks of the LPC

coefficient, while the j index is used for the various internal calculations. The

LPC algorithm is executed as follows (from MATLAB):

for i = 1:17

 % calculate the sum

for j = 1: (i-1)

 s = s + lpc_ram(j) * acc_ram(i-j);

end

% calculate k

 k = -(acc_ram(i) + s) / alpha;

 % calculate lpc_ram[1:(i-1)]

 for j = 1: (i-1)

 temp_ram(j) = lpc_ram(j) + (k * lpc_ram(i-j)));

 end

 for j = 1: (i-1)

 lpc_ram(j) = temp_ram(j);

 end

 % store new value of lpc_ram[i] and calculate new alpha

 lpc_ram(i) = k;

 alpha = alpha * (1-k*k);

119

 % next interation

End

States S_START_S_CALC and S_WAIT_FOR_S_CALC compute the s

value of the algorithm. States S_START_K_CALC,

S_WAIT_FOR_K_CALC_SUM and S_WAIT_FOR_K_CALC compute the k

value. States S_START_AJ_CALC, S_AJ_CALC1, S_AJ_CALC2, S_AJ_CALC3,

S_WAIT_FOR_AJ_CALC, S_UPDATE_AJ_DLY, S_UPDATE_AJ and

S_AI_CALC calculate the temp_ram and lpc_ram coefficients.

When all of the LPC coefficients have been calculated and stored, the

state machine jumps to S_LOAD_FFT_FIFO where the FFT_FIFO is loaded

with LPC coefficients 1 through 17 and then zero padded for the remaining

values.

Testbench: tb_lpc.v

The LPC module testbench writes the data from the file

"lpc_ham_test_data.txt" into the input of the LPC module (DUT). The

testbench displays the final LPC coefficients in transcript window. The

MATLAB script "lpc.m" reads the same input file and displays the results.

The results between the MATLAB script and the simulation output are

compared to verify operation.

120

6.8 Mel-Frequency Cepstral Coefficients (MFCC) Function

Module: mfcc_module.v

Megafunction Cores : ALTFP_MULT (mult_float_32.v) x 3

 ALTFP_ADD_SUB (add_sub_float_32.v)

 ALTFP_LOG (log_float_32.v)

 ALTFP_COMPARE (fp_comp_lt_single.v)

 ROM: 1-PORT (mel_filter_rom.v)

 ROM: 1-PORT (rom_512x32bits_dct_matrix.v)

 RAM: 2-PORT (dpram_32x32bits.v) (x2)

 RAM: 2-PORT (dpram_256x32bits.v)

The MFCC HDL module calculates the Mel-Filtered Cepstral

Coefficients (MFCC) of the input spectral data (audio, LPC or Enhanced

spectrums). The MFCC calculation has two major sections, the Mel-Filter

and the Discrete Cosine Transform (DCT).

6.8.1 Mel-Scale Filter Function

Input spectrum data is written into a RAM temporarily until all (129)

samples are received. When all samples are received, the state machine

begins processing the input data through the Mel-Filter. The Mel-Filter

consists of a set of triangular coefficients which are stored in mel_filter_rom.

121

The Mel-Filter consists of 25 bands. The input spectrum is multiplied by the

coefficients in these bands and the energy for each band is summed. The

resulting sums represent a Mel-Scale optimized spectrum. A graph of the

Mel-Filter coefficients is shown below:

Figure 6.7 – Mel-scale Filter Output

The Mel-Filter coefficients are arranged in a ROM (mel_filter_rom.v),

with a header for each filter section. The header defines the starting bin (bits

15-0) and length (bits 31-16). The state machine begins by extracting the first

32-bit word from the Mel Filter ROM and stores the starting bin and length.

The state machine then reads out the filter coefficients and corresponding

spectrum data. The spectrum data is multiplied by the filter coefficient and

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

122

the results added to a running sum.

When all data is summed for the current filter, the natural logarithm

(ln) is calculated for the filter sum. If the ln of the filter sum is less than an

energy floor constant, then the ln of the energy floor constant is stored Mel

Filter RAM. Otherwise, the ln of the filter sum is stored. This procedure is

repeated for each filter band. This is the equivalent algorithm for the Mel

Filter calculation:

for i = 0 to MEL_FILTER_COUNT - 1

 filter_sum = 0

 for j = starting_bin to starting_bin+length

 filter_sum = filter_sum + filter_coefficient * spectrum_data

next j

 filter_sum_ln = ln(filter_sum)

 if filter_sum <= ENERY_FLOOR then

 mel_filter_result(i) = ENERGY_FLOOR_LOG

 else

 mel_filter_result(i) = filter_sum_ln

next i

The next step in the MFCC algorithm is to calculate the Mel Filter

energy. Each result of the Mel Filter sum calculation is read from the Mel-

123

Filter RAM and summed. If the resulting Mel-Filter energy is less than or

equal to 0, all Mel-Filter Cepstral Coefficients are written as 0. Otherwise the

Discrete Cosine Transform of the Mel-Filter sums is calculated.

6.8.2 Discrete Cosine Transform (DCT) Function

The DCT is applied to the Mel-Filtered spectrum to compress the

spectrum and generate the Mel-Scale Cepstral Coefficients. The DCT

algorithm in the MFCC module is implemented with a DCT Matrix

coefficient lookup table. The table was specifically generated for a 25-band

input spectrum with 13 output coefficients. The algorithm for generating the

DCT lookup table is:

for i = 1 to NumCepstralCoeff - 1

 for j = 0 to NumChannels - 1

 Mx[(i-1)*NumChannels+j] = cos (pi * i/NumChannels *

 (j+0.5))

 next j

next i

where: Mx = DCT matrix

 NumCepstralCoeff = 13

 NumChannels = 25

124

This results in a table of 300 coefficients. The DCT matrix is stored in the

ROM rom_512x32bits_dct_matrix.v.

The MFCC state machine calculates the DCT of the Mel-Filtered

spectrum if the Mel-Filter energy result is greater than 0. The state machine

implements the DCT using the following algorithm:

for i = 0 to NumCepstralCoeff - 2

 DCToutData[i] = 0.0F;

 for j = 0 to NumChannels - 1

 DCToutData[i] = DCToutData[i] + MelFiltlog[j] *

 Mx[i*NumChannels+j]

 next j

next i

 where: Mx = DCT matrix

 NumCepstralCoeff = 13

 NumChannels = 25

 DCToutData = the DCT output vector result

 MelFiltlog = the Mel-Filter (ln) table output

The last value of the DCT output vector is set to the Mel-Filter Energy result,

calculated prior to the DCT.

 DCToutData[NumCepstralCoeff-1] = MelFiltEnergy;

125

The DCT results are written into a RAM memory as the Mel-Filtered Cepstral

Coefficients. The MFCCs can then be read by subsequent HDL modules.

6.9 Enhanced Spectrum Function

Module: enhanced_spec.v

Megafunction Cores: ALTFP_MULT (mult_float_32.v) x 3

 ALTFP_ADD_SUB (add_sub_float_32.v)

 ALTFP_DIV (div_float_32.v)

 RAM: 2-PORT (dpram_256x32bits.v) (x2)

The Enhanced Spectrum HDL module performs an enhancement

algorithm on the LPC Spectrogram output data. When the spectrogram is

writing out LPC spectrogram data to the top level, the data is also written

into the input of the Enhanced Spectrogram (EnhSpec) module via

LPC_SPEC_DATA_in and LPC_SPEC_DV_in. The data is written into a RAM

block in the EnhSpec module.

The algorithm uses only the single-sided spectrum, so the state

machine starts the calculations when 128 data points have been written into

the input RAM. Similar to the LPC Module, all of the algorithms'

calculations share the floating-point Megafunction cores. The state machine

sets a calculation select value (calc_sel) which control muxes for the core's

126

inputs for current calculation. A counter (calc_wait) is used by the state

machine to wait for the cores to complete their calculations.

Enhanced Spectrum Algorithm

Once the input RAM is filled with data from the LPC spectrogram, the

state machine will begin the algorithm (from MATLAB):

% "Silence Factor" Computation

normz = 0;

for i = 1:SPECL

 normz = normz + temp_spec_vector(i);

end

normz = SF * normz + SIL_EN_FLOOR;

neighborhood_sum = zeros (SPECL,1);

% Computation of initial neighborhood sum for bin i=0

local_sum = temp_spec_vector(1);

for j = 2:HALF_NEIGHB_SIZE+1

 local_sum = local_sum + temp_spec_vector(j);

end

neighborhood_sum(1) = local_sum;

% Computing Neighborhood Sum X[j+i]

for i = 2:SPECL

127

 j = i + HALF_NEIGHB_SIZE;

 k = i - HALF_NEIGHB_SIZE-1;

% Handling edge effects

if j >= SPECL

 indx1 = SPECL;

else

 indx1 = j;

end

if (k<1)

 indx2 = 1;

else

 indx2 = k;

end

 % Adding New Element - Dropping Old one from local

local_sum=local_sum+temp_spec_vector(indx1)temp_spec_vector(ind

 x2);

% Removing Center Element from local_sum

neighborhood_sum(i) = local_sum - temp_spec_vector(i);

end

 % Computing denominator

128

denom = zeros(SPECL,1);

for i=1:SPECL

 denom(i) = normz + NF * neighborhood_sum(i) + BG *

background_estm(i);

end

% Scaling the output

out_spec_vector = zeros(SPECL,1);

for i=1:SPECL

 tmp = EG * (temp_spec_vector(i) / denom(i));

 out_spec_vector(i) = tmp * tmp;

end

Note: For the initial demonstration, the background noise estimate is

considered to be zero, so it is not calculated by the HDL logic at this time. It

will be added when the VAD logic is incorporated. The algorithm uses the

following constants:

 LPC_INDEX_MAX = 8'h7F; // max. spectrum

 index (128 total)

 HALF_NBRHOOD_MAX = 8'h05;

129

 SILENCE_FACTOR = 32'h3C23D70A; // 1.0e-2

 SIL_EN_FLOOR = 32'h501502F9; // 1.0e10

 NBRHOOD_FACTOR = 32'h3C23D70A; // 1.0e-2

 ENHANCE_GAIN = 32'h4CBEBC20; // 1.0e8

States S_CALC_NORMZ_SUM and S_CALC_NORMZ_SF calculate the normz

sum.

States S_INIT_LOCSUM0 and S_CALC_LOCSUM0 calculate the initial (0)

local sum. States S_CALC_LOCSUM, S_CALC_LOCSUM_WAIT_INDEXH,

S_CALC_LOCSUM_WAIT_INDEXL, S_CALC_LOCSUM_STAGE1 and

S_CALC_LOCSUM_STAGE2 calculate the local_sum values. State

S_CALC_DENOM calculates the denominator. State S_CALC_TEMP

calculates the temp values and stores them in the temp RAM.

State S_SCALE_OUTPUT performs the final scaling of the temp data and

writes the outputs out of the module via ENH_SPEC_DATA_out and

ENH_SPEC_DV_out; State S_BACKFILL writes out 128 zero values to match

the length of the normal and LPC spectrograms. Testbench: tb_enh_spec.v

The LPC module testbench writes the data from the file

"simout_spec_lpc_data_small.txt" into the input of the enhanced

spectrogram module (DUT). The testbench writes output data from the DUT

into the file "simout_enh_spec_data.txt". The MATLAB script

130

"tb_enh_spec.m" reads the same input file and the simulation output file and

compares and plots the results and any resulting error.

6.10 Voice Activity Detector (VAD)

Module Name: vad_module.v

Megafunction Cores : ALTFP_MULT (mult_float_32.v)

 ALTFP_ADD_SUB (add_sub_float_32.v) x 2

 ALTFP_LOG (log_float_32.v)

 ALTFP_DIV (div_float_32.v)

 ALTFP_COMPARE (fp_comp_lt_single.v)

 ALTFP_CONV (int32_2_float.v)

 RAM: 2-PORT (dpram_32x32bits.v)

 RAM: 2-PORT (dpram_256x32bits.v)

The VAD module determines if the incoming data is voice content

and sets an output flag accordingly. The VAD accepts LPC spectral and

MFCC data, along with the frame energy to calculate three metrics which are

used to set the VAD state output.

As with the other output modules, a state machine is used to process

the incoming data using shared DSP resources. This method cuts down on

the amount of DSP cores needed for processing. Two registers: calc_sel and

131

calc_wait are used, respectively, to select the DSP core calculation inputs and

set the number of iterations needed to perform the selected calculation.

A 256 x 32-bit DPRAM is instantiated to store incoming LPC spectrum

samples (LPC_SPEC_DATA_in, LPC_SPEC_DV_in) and a 32 x 32-bit DPRAM

stores incoming LPC MFCC samples (MFCC_DATA_in, LPC_MFCC_DV_in).

The state machine registers FRAME_ENERGY_in when all LPC spectrum

samples have been stored. After reset, the state machine waits in state

S_WAIT_FOR_LPC_SPEC_DATA for all LPC spectrum samples to be stored;

it then registers the input frame energy and begins the log2

(frame_energy) calculation (states S_CALC_LOG2FE_STAGE1 and

S_CALC_LOG2FE_STAGE2). The state machine will then wait for all LPC

MFCC input samples to be stored (state S_WAIT_FOR_LPC_MFCC_DATA).

 When all MFCC input samples have been received, the MFCC feature

will be calculated in state S_CALC_MFCC_FEATURE. Next, the signal energy

stats are calculated in states S_CALC_SIG_ENERGY_STATS through

S_CALC_MEAN_LOG2_FRAME_ENERGY2. Two frame energy stats are

calculated for VAD on and off. These values are used later in the algorithm

to determine the future VAD state. States S_CALC_VAD_SPEC_STATS

through S_CALC_VAD_SPEC_VAR calculate the sum, sum^2, mean and

variance of the LPC spectrum for the spectrum stats. States

132

S_CALC_AVG_SPEC_VAR through S_CALC_AVG_SPEC_VAR2 calculate the

LPC spectrum average variance. The spectrum average variance is also

calculated for VAD on and off conditions and these values are used to

determine the future VAD state. States S_CALC_MEAN_MFCC_STATS

through S_CALC_MEAN_MFCC2 calculate the VAD MFCC feature. VAD on

and off values for this feature are stored, similar to the frame energy and

spectrum features. Each of the VAD features (frame energy, spectrum and

MFCC) are now used to make a determination of the VAD state (on or off)

based on that single feature. The frame energy VAD state is calculated in

states S_SET_VAD_EN_STATE through S_SET_VAD_EN_STATE2, the

spectrum VAD state in states S_SET_VAD_SPEC_STATE through

S_SET_VAD_SPEC_STATE2 and finally the MFCC VAD state in states

S_SET_VAD_MFCC_STATE through S_SET_VAD_MFCC_STATE2.

The final VAD state determination is made by calculating a score

based on the weighted sum of the three VAD features. If the score is less

than zero, the current frame is considered to contain speech energy and a

VAD On Count is incremented. Otherwise a VAD OFF count is incremented.

When the VAD ON count surpasses a set threshold, the final VAD state will

be set to ON. Likewise, if the VAD OFF count exceeds a set threshold, the

133

VAD state will be set to OFF. These thresholds build in some hysteresis to

prevent false VAD triggering.

States S_VAD_SCORE through S_VAD_SCORE_CALC2 calculate the

VAD score. States S_VAD_DECISION_ON and S_VAD_DECISION_OFF set

the final VAD state of the current frame and write the VAD state output for

use at the backend processor. After final VAD state determination, the state

machine will return to the idle state to wait for the next frame’s data.

6.11 Hardware Front End Output vs. Software Front End Output

Because Wake-Up-Word Speech Recognition is a new concept, it is

difficult to compare its performance with existing Speech Recognition

Systems. In order to perform a fair analysis we tested the performance of our

front-end system by comparing its spectrograms and features i.e. (MFCC,

LPC, and ENH-MFCC) with the software (C, C++) WUW’s front-end

algorithm implementation, and with the MATLAB front-end model which is

implemented specially for this reason.

The front-end processor described in this dissertation has been

modeled in Verilog HDL and implemented in low cost, high speed, and

power efficient (Cyclone III EP3C120F780C7) FPGA on DSP development kit.

The development of the front-end was conducted block by block based on

134

software (C, C++) algorithm implementation and on equivalent floating-

point MATLAB implementation. Each block was tested after it was

completed to ensure correct operation before the next block was developed.

The words “Onward” and “Voyager” with 8KHz sampling rate was chosen as

input audio data for testing our Front-end; we tested and compared (MFCC,

LPC, and ENH-MFCC) spectrograms and features out of the hardware front-

end model with the MATLAB front-end model and the software (C, C++)

front-end model as individual models. The results show:

1. For this test we chose the word “Onward” with 8 KHz sampling rate as

input audio data for testing our Front-end. As shown in Fig. 6.8, 6.9,

and 6.10, the MFCC, LPC, and ENH-MFCC spectrograms generated

from MATLAB, Hardware, and Software (C++) are identical.

135

Figure 6.8 – MATLAB, Hardware, and C++ Front-end MFCC Spectrograms for “Onward”

Audio Data

Figure 6.9 – MATLAB, Hardware, and C++ Front-end LPC Spectrograms for “Onward”

Audio Data

136

Figure 6.10 – MATLAB, Hardware, and C++ Front-end Enhanced MFCC Spectrograms for

“Onward” Audio Data

In Fig. 6.11, we generated the “Onward” audio signal with the software

(C++) front-end spectrograms that shows are identical with the Hardware

front-end spectrograms shown in Fig. 6.12.

137

Figure 6.11 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Onword”

Audio Data

Figure 6.12 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for

“Onword” Audio Data

138

2. In the second test we chose the word “Voyager” with 8 KHz sampling

rate as input audio data for testing our Front-end. As shown in Fig.

6.13, 6.14 the MFCC, LPC, and ENH-MFCC spectrograms generated

from Hardware and Software (C++) are identical.

Figure 6.13 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for

“Voyager” Audio Data

139

Figure 6.14 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for

“Voyager” Audio Data. (Due to limited amount of hardware resources the part of the

data is not show in the resulting spectrograms).

In Fig. 6.15, 6.16 the MFCC, LPC, and ENH-MFCC 12-features

histograms generated from Hardware and Software (C++) are also identical.

140

Figure 6.15 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager”

Audio Data (12- Coefficients)

Figure 6.16 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for

“Voyager” Audio Data (12- Coefficients). (Due to limited amount of hardware resources

the part of the data is not show in the resulting Histograms).

141

We regenerated new MFCC, LPC, and ENH-MFCC histograms with 11-

features by removing the first feature slice because of large dynamic range of

the first feature that would make the remaining output features very small.

As shown in Fig. 6.17, 6.18 the MFCC, LPC, and ENH-MFCC 11-features

histograms generated from Hardware and Software (C++) are identical.

Figure 6.17 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager”

Audio Data (11- Coefficients C2-C12)

142

Figure 6.18 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for

“Voyager” Audio Data (11- Coefficients C2-C12). (Due to limited amount of hardware

resources the part of the data is not show in the resulting Histograms)

3. In the third test we chose the word “Operator” with 8 KHz sampling

rate as input audio data for testing our Front-end with VAD built-in.

As shown in Fig. 6.19, 6.20 the MFCC, LPC, and ENH-MFCC

spectrograms generated from Hardware and Software (C++) are

identical.

143

Figure 6.19 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC

Spectrograms for “Operator”

Figure 6.20 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Spectrograms for

“Operator” Audio Data

In Fig. 6.21, 6.22 the MFCC, LPC, and ENH-MFCC 12-features

histograms generated from Hardware and Software (C++) are also identical.

144

Figure 6.21 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms

for “Operator” Audio Data

Figure 6.22 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms for

“Operator” Audio Data

145

7 Conclusions

In this dissertation, the efficient hardware architecture and

implementation of front-end of WUW-SR has been presented. We have

described relevant parts of front-end from theory to hardware design. Details

have been given of how these designs were implemented on FPGA, and the

results of these implementations analyzed, which included comparing them

with software equivalents. WUW front-end is responsible for generating

three sets of features MFCC, LPC, and ENH-MFCC. These features are

needed to be decoded with corresponding HMMs in the back-end stage of

the WUW Speech Recognizer (e.g., server). The computational complexity

and memory requirement of these sets of feature algorithms is analyzed in

detail and showed significant identical with software features. The

partitioned table look-up method is adopted and modified to be suitable in

146

our case with very small table memory requirement. The overall performance

and area is highly improved. Presented front-end of Wake-Up-Word Speech

Recognition is a novel solution which is the first hardware system specifically

designed for WUW-SR based on three different sets of features. The most

important characteristic of a WUW-SR system is that it should guarantee

virtually 100% correct rejection of non-WUW (out of vocabulary words -

OOV) while maintaining correct acceptance rate of 99% or higher (in

vocabulary words - INV). This requirement sets apart WUW-SR from other

speech recognition systems because no existing system can guarantee 100%

reliability by any measure. To demonstrate its effectiveness, the presented

design has been implemented in cyclone III FPGA hardware. The custom

DSP board developed is a power efficient, flexible design and can also be

used as a general purpose prototype board. We have presented a detailed

breakdown of front-end system into modules and subsystems with initial

sketches of block diagrams for these modules and subsystems. We have also

implemented a prototype of our design modules algorithm in MATLAB and

demonstrated its operation on simple test cases.

Finally, we implemented test bench file for every module to perform

simulation, we have identified several points of improvement to our initial

naive algorithm, so the prospect of implementing a successful front-end

147

system in FPGA seems tenable. While software or DSPs have been sufficient

to deal with the WUW speech pre-processing, and although software is well-

suited to the post-decoding dictionary look-up, future research work may

also want to look at the post-processing stage, towards the goal of a complete

integrated Wake-Up-Word Speech Recognition System on programmable

chip.

References

[1] V. Z. Këpuska and T. B. Klein, A novel Wake-Up-Word speech recognition

 system, Wake-Up-Word recognition task, technology and evaluation, Nonlin.

 Anal.: Theory Meth. Appl. 71, pp. e2772–e2789, 2009. doi:10.1016/j. na.

 2009.06.089.

[2] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Spoken Language Processing:

 A Guide to Theory, Algorithm and System Development, Prentice Hall PTR,

 2001.

[3] Ron Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie

 Zaenen, Antonio Zampolli, Victor Zue (Eds.), Survey of the State of the Art in

 Human Language Technology, Cambridge University Press and Giardini,

 1997.

[4] V. Këpuska, Wake-Up-Word Application for First Responder Communication

 Enhancement, SPIE, Orlando, 2006.

[5] T. Klein, Triple scoring of hidden markov models in wake-up-word speech

 recognition, Thesis, Florida Institute of Technology.

[6] V. Këpuska, Dynamic time warping (DTW) using frequency distributed

148

 distance measures, US Patent: 6983246, January 3, 2006.

[7] V. Këpuska, Scoring and rescoring dynamic time warping of speech, US

 Patent: 7085717, April 1, 2006.

[8] V. Këpuska, T. Klein, On Wake-Up-Word speech recognition task, technology,

 and evaluation results against HTK and Microsoft SDK 5.1, Invited Paper:

 World Congress on Nonlinear Analysts, Orlando 2008.

[9] V. Këpuska, D.S. Carstens, R. Wallace, Leading and trailing silence in Wake-

 Up-Word speech recognition, in: Proceedings of the International Conference:

 Industry, Engineering & Management Systems 2006, Cocoa Beach, FL.,

 259_266.

[10] J.R. Rohlicek, W. Russell, S. Roukos, H. Gish, Continuous hidden Markov

 modeling for speaker-independent word spotting, vol. 1, 23_26 May 1989,

pp.

 627_630.

[11] C. Myers, L. Rabiner, A. Rosenberg, An investigation of the use of dynamic

 time warping for word spotting and connected speech recognition, in:

 ICASSP '80. vol. 5, Apr 1980, pp. 173_177.

[12] A. Garcia, H. Gish, Keyword spotting of arbitrary words using minimal

 speech resources, in: ICASSP 2006, vol. 1, 14_19 May 2006, pp. I_I.

[13] D.A. James, S.J. Young, A fast lattice-based approach to vocabulary

 independent wordspotting, in: Proc. ICASSP '94, vol. 1, 1994, pp. 377_380.

[14] S.P. Davis, P. Mermelstein, Comparison of parametric representations for

 monosyllabic word recognition in continuously spoken sentences, IEEE

149

 Trans. ASSP 28 (1980) 357_366.

[15] John Makhoul, Linear prediction: A tutorial review, Proc. IEEE. 63 (1975) 4.

[16] Lee, L.S., Tseng, C.Y., Lin, Y.H., Lee, Y., Tu, S.L., Gu, H.Y., Liu, F.H.,

 Chang, C.H., Hsieh, S.H., Chen, C.H. & Huang, K.R., “A fully parallel

 Mandarin speech recognition system with very large vocabulary and almost

 unlimited texts,” Proc. IEEE International Symposium on Circuits and

 Systems, 1991, pp.578–581.

[17] Altera, Inc.

 http://www.altera.com/.

[18] Melnikoff, S.J., "Speech recognition in programmable logic," PhD Thesis,

 University of Birmingham, 2003.

[19] Makimoto, T., “The rising wave of field programmability,” Proc. 10th

 International Conference on Field Programmable Logic and Applications

 (FPL 2000), Lecture Notes in Computer Science #1896, 2000, pp.1–6.

[20] Makimoto, T., “The hot decade of field programmable technologies,” IEEE

 International Conference on Field Programmable Technology (FPT

 2002),2002, pp.3-6.

[21] Laufer, R., Taylor, R.R. & Schmit, H., “PCI-PipeRench and the SWORDAPI:

 a system for stream-based reconfigurable computing,” Proc. IEEE

 Symposium on FPGAs for Custom Computing Machines (FCCM ’99), 1999,

 pp.200–208.

[22] Sezer, S., Heron, J., Woods, R., Turner, R. & Marshall, A., “Fast partial

 reconfiguration for FCCMs,” Proc. IEEE Symposium on FPGAs for Custom

 Computing Machines (FCCM’98), 1998, pp.318–319.

[23] James-Roxby, P. & Blodget, B., “Adapting constant multipliers in a neural

 network implementation,” Proc. IEEE Symposium on FPGAs for Custom

http://www.altera.com/products/fpga.html

150

 Computing Machines (FCCM 2000), 2000, pp.335–336.

[24] IEE, “FPGAs not ready to go embedded,” IEE Review, Institution of

 Electrical Engineers, April 2003.

[25] G´omez-Cipriano, J.L., Pizzatto Nunes, R., Bampi, S. & Barone, D. “Design

 of functional blocks for a speech recognition portable system,” Proc. 14th

 Symposium on Integrated Circuits and Systems Design (SBCCI ’01), 2001,

 pp.20–25.

[26] Shozakai, M., “Speech interface VLSI for car applications”, Proc. IEEE

 International Conference On Acoustics, Speech And Signal Processing

 (ICASSP ’99), 1999, pp.141–144.

[27] Nakamura, K., Zhu, Q., Maruoka, S., Horiyama, T., Kimura, S. & Watanabe,

 K.,“Speech recognition chip for monosyllables,” Proc. Asia and South Pacific

 Design Automation Conference (ASP-DAC 2001), 2001, pp.396–399.

[28] Shi, Y.Y., Liu, J. & Liu, R.S., “Single-chip speech recognition system based

 on 8051 microcontroller core,” IEEE Transactions on Consumer Electronics,

 47, No.1, 2001, pp.149–153.

[29] Schmit, H. & Thomas, D., “Hidden Markov modeling and fuzzy controllers in

 FPGAs,” Proc. IEEE Symposium on FPGAs for Custom Computing Machines

 (FCCM ’95), 1995, pp.214-221.

[30] Vargas, F.L., Fagundes, R.D.R. & Junior, D.B., “A FPGA-based Viterbi

 algorithm implementation for speech recognition systems,” Proc. IEEE

 International Conference on Acoustics, Speech, and Signal Processing

 (ICASSP ’01), 2001, pp.1217–1220.

[31] Jou, J.M., Shiau, Y.H. & Huang, C.J., “An efficient VLSI architecture for

151

 HMMbased speech recognition,” Proc. IEEE International Conference on

 Electronics, Circuits and Systems (ICECS ’01), 2001, pp.469–472.

[32] Stogiannos, P., Dollas, A. & Digalakis, V., “A configurable logic based

 architecture for real-time continuous speech recognition using hidden

Markov

 models,” Journal of VLSI Signal Processing Systems for Signal Image and

 Video Technology, 24, No.2–3, 2000, pp.223–240.

[33] Stogiannos, P., “FCCM coprocessor for real-time continuous speech

 recognition,” Masters Thesis, Microprocessor and Hardware Laboratory,

 Department of Electronic and Computer Engineering, Technical University of

 Crete, 1999.

[34] Sensory, Inc.

 http://www.sensoryinc.com/

[35] Philips Speech Processing

 http://www.speech.philips.com/

[36] Frostad, K., “The state of embedded speech,” Speech Technology Magazine,

 Mar/Apr 2003 and http://www.speechtechmag.com/.

[37] Mozer, T., “The third wave: speech in consumer electronics,” Speech

 Technology Magazine, Jul/Aug 2000 and http://www.speechtechmag.com/.

[38] Telecom Italia Lab (TILAB): System on Chip.

 http://www.idosoc.com/

[39] Xilinx, Inc.

 http://www.xilinx.com/

[40] Texas Instruments DSP Developers’ Village

http://www.sensoryinc.com/
http://www.speech.philips.com/
http://www.speechtechmag.com/
http://www.speechtechmag.com/
http://www.idosoc.com/
http://www.xilinx.com/

152

 http://dspvillage.ti.com/

[41] Cox, S.J., “Hidden Markov models for automatic speech recognition:

 theory and application,” British Telecom Technology Journal, 6, No.2, 1988,

 pp.105–115.

[42] Eldredge, J.G. & Hutchings, B.L., “RRANN: a hardware implementation of

 the back-propagation algorithm using reconfigurable FPGAs,” Proc. IEEE

 International Conference on Neural Networks / IEEE World Conference on

 Computational Intelligence, 4, 1994, pp.2097–2102.

[43] Chen, R. & Jamieson, L.H., “Experiments on the implementation of recurrent

 neural networks for speech phone recognition,” Proc. 30th Annual Asilomar

 Conference on Signals, Systems and Computers, 1996, pp.779–782.

[44] Bohez, E.L.J. & Senevirathne, T.R., “Speech recognition using fractals,”

 Pattern Recognition, 34, No.11, 2001, pp.2227–2243.

[45] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Prentice

 Hall, 1993.

[46] S. Davis and P. Mermelstein, “Comparison of parametric representations for

 monosyllabic word recognition in continuously spoken sentences,” Acoustics,

 Speech and Signal Processing, IEEE Transactions on, vol. 28, no. 4, pp. 357–

 366, Aug 1980.

[47] Ngoc-Vinh Vu, Jim Whittington, Hua Ye, and John C. Devlin “Implementation

of the MFCC front-end for low-cost speech recognition systems”.

by: In: ISCASIEEE (2010) , p. 2334-2337.

[48] J.-C. Wang, J.-F. Wang, and Y.-S. Weng, “Chip design of mfcc extraction

 for speech recognition,” Integr. VLSI J., vol. 32, no. 1-3, pp. 111–131, 2002.

[49] W. Han, C.-F. Chan, C.-S. Choy, and K.-P. Pun, “An efficient mfcc extraction

http://dspvillage.ti.com/

153

 method in speech recognition,” in Circuits and Systems, 2006. ISCAS 2006.

 Proceedings. 2006 IEEE International Symposium on, 0-0 2006, pp. 4 pp.–.

[50] Nedevschi, S., Patra, R., Brewer, E., “Hardware Speech Recognition for User

 Interfaces in Low cost, Low Power Devices,” 43nd Design Automation

 Conference, IEEE Press, California, June 2005, pp.684-689.

[51] Melnikoff, S., Quigley, S.F., Rusell, M. J., “Implementing a Simple

 Continuous Speech Recognition System on an FPGA,” Proceedings of the

 10th Annual IEEE Symposium on Field-Programmable Custom Computing

 Machines, Napa, California, USA (2002).

[52] Staworko, M.; Rawski, M.; , "FPGA implementation of feature extraction

 algorithm for speaker verification," Mixed Design of Integrated Circuits and

 Systems (MIXDES), 2010 Proceedings of the 17th International Conference ,

 vol., no., pp.557-561, 24-26 June 2010

[53] D. A. Reynolds. Experimental Evaluation of Features for Robust Speaker

 Identification. IEEE Trans. Speech and Audio Processing, 2(4):639–643,

 1994.

[54] A.Kaczmarek, M.Staworko, Application of Dynamic Timer Warping and

 Cepstrograms to Text-Dependent Speaker Verification, Signal Processing

 Algorithms, Architectures, Arrangements and Applications, 24-26 September,

 Poznan, Poland.

[55] Charbuillet, C., Gas, B., Chetouani, M., Zarader J.L.: Optimizing feature

 complementarily by evolution strategy: Application to automatic speaker

 verification. Speech Communication, Vol. 51, No. 9, September, 2009, pp.

 724-731.

154

[56] S. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE

Trans. Acoust., Speech, Signal Processing, vol. 28, no. 4, pp. 357–366, 1980.

[57] H. Combrinck and E. Botha, “On the mel-scaled cepstrum,” department of

Electrical and Electronic Engineering, University of Pretoria.

[58] M. R. Schroeder, “Linear prediction, extremely entropy and prior Information

in speech signal analysis and synthesis,” Speech Communication, vol. 1, no. 1,

pp. 9–20, May 1982.

[59] K. K. Paliwal and W. B. Kleijn, Speech Synthesis and Coding, chapter

Quantization of LPC parameters, pp. 433–466, Elsevier Science Publ.,

Amsterdam, the Netherlands, 1995.

[60] Texas Instruments

 http://www.ti.com/

[61] Altera, Design Software

 http://www.altera.com/products/software/quartus-ii/subscription-

edition/qts-se-index.html

[62] Mentor Graphic, ModelSim Software

 http://www.mentor.com/products/fv/modelsim/

[63] http://en.wikipedia.org/wiki/Quantization_(sound_processing) #Audio_

 quantization.

[64] M. R. Schroeder, “Linear prediction, extremely entropy and prior Information

 in speech signal analysis and synthesis,” Speech Communication,

 vol. 1, no. 1, pp. 9–20, May 1982.

[65] K. K. Paliwal and W. B. Kleijn, Speech Synthesis and Coding, chapter

 Quantization of LPC parameters, pp. 433–466, Elsevier Science Publ.,

 Amsterdam, the Netherlands, 1995.

http://www.ti.com/
http://www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-index.html
http://www.mentor.com/products/fv/modelsim/

155

Appendix: Publications

Journals:

Këpuska VZ, Eljhani MM, Hight BH (2013) Front-end of Wake-Up-Word

Speech Recognition System Design on FPGA. J Telecommun Syst Manage

2:108. doi:10.4172/2167-0919.1000108.

V. Këpuska, M. Eljhani and B. Hight, "Wake-Up-Word Feature Extraction on

FPGA," World Journal of Engineering and Technology, Vol. 2 No. 1, 2014, pp.

1-12. doi: 10.4236/wjet.2014.21001.

Books:

156

