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A typical speech recognition system is push button operated (Push-to-

talk), which requires hand movement and hence mixed multi-modal 

interface. However, for disabled patients and those who use hands-busy 

applications (e.g., where the user has objects to manipulate or device to 

control while asking for assistance from another device) movement may be 

restricted or impossible. The only alternative is to use Speech Only Interface. 

The method that is being proposed is called Wake-Up-Word Speech 

Recognition (WUW-SR). A WUW-SR system would allow the user to operate 

(activate) many systems (Cell phone, Computer, Elevator, etc.) with speech 

commands instead of hand movements.  

This work defines a new front-end paradigm of the Wake-Up-Word 

Speech Recognition on Field Programmable gate Arrays (FPGA). The-State-

Of-The-Art Front-end of WUW-SR system is based on three different 
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subsystems that produce three sets of features: (1) Mel-frequency Cepstral 

Coefficients (MFCC), (2) Linear Predictive Coding Coefficients (LPC), and (3) 

Enhanced Mel-frequency Cepstral Coefficients (ENH_MFCC). These 

extracted features are then compressed and transmitted to the server via a 

dedicated channel, where subsequently they are decoded. These features are 

decoded with corresponding Hidden Markov Models (HMMs) in the back-

end stage of the WUW-SR.  

In the WUW-SR system, the front-end processor is located at the 

terminal (e.g. Mobile phone) which is typically connected over a data 

network to remote back-end recognition (e.g., server). WUW’s front-end can 

be added to any hand-held electronic device compatible with WUW-SR and 

command (activate) it by using our voice only (no push to talk as is presently 

done).  

WUW’s front-end is designed, and implemented in Altera DSP 

development kit with Cyclone III FPGA as a portable system acting as a 

processor that is capable of computing three different sets of features at a 

much faster rate than software. It is cost effective, consumes very little 

power, and it is not limited by having to operate on a general-purpose 

computer so it can be used on any portable device. 
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1 Introduction 

“Operator (WUW for Elevator Simulator). Take me to the last floor. ” 

Operator responds “Taking you to the last floor.” The ideas of being able to 

talk to a machine and have it understand you have been a reoccurring theme 

in science fiction for decades. While we are not yet at the stage where 

electronic machines can comprehend our every word and act on it, these 

machines are becoming ever more complex and ubiquitous. 

WUW is a new area in speech recognition. The WUW recognizer is a 

highly efficient and accurate recognizer specializing in the detection of a 

single word or phrase when spoken in the context of requesting attention, 

while rejecting all other words, phrases, sounds, noises and other acoustic 

events with virtually 100% accuracy. 

Continuous speech recognition has been acknowledged as one of the 

most challenging problems today. There are many issues that contribute to 

the difficulty of automatically recognizing human speech such as corruption 

of noise, variability of the speaker and speaking mode, change of 

environment conditions, inaccuracy of model assumption, complexity of 

language, etc. In addition, as a statistical model based system, a speech 

recognizer demands sufficient, well transcribed speech data for the model 
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training in order to achieve satisfactory performance. It is often intractable to 

fulfill this requirement since the time and expense spent on speech data 

collection and transcription are not always affordable for many real word 

applications. 

For the past several decades, designers have processed speech for a 

wide variety of applications ranging from mobile communications to 

automatic reading machines. Speech has not been used much in the field of 

electronics and computers due to the complexity and verity of speech signals. 

However with modern processes and methods we can process speech signals 

in Field-Programmable Gate Array (FPGA) chips.  

While others concentrate on developing the algorithms and models, 

there still remains the question of how to implement them on programmable 

chip. Several speech recognition software packages already exist that can run 

on a PC, including the Wake-Up-Word Speech Recognition System; however, 

they are limited by having to operate on a general-purpose processor. In the 

end, to achieve the maximum processing power, application-specific 

hardware is the answer.  

A great deal of work has been conducted in this dissertation to 

address this problem by designing an efficient hardware front-end of       

State-Of-The-Art WUW-SR with an FPGA using an DSP Altera-based system, 
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acting as a processor that is responsible for extracting three types of features 

from the input audio signal. These features are Mel-frequency Cepstral 

Coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), Enhanced 

Mel-frequency Cepstral Coefficients (ENH-MFCC). 

1.1 Aims and Objects 

One of the goals of speech recognition is to allow natural 

communication between humans and computers. A major obstacle to this is 

the fact that most systems today still rely to some extent on non-speech 

input. For example, some systems use a “push to talk” model, meaning that 

speech recognition is only activated when the user pushes a button. Systems 

that are “continuously listening” usually suffer from poor accuracy, especially 

if they are speaker independent. 

The WUW Speech Recognizer is a complex system comprising of 

three major parts: the front-end, Voice Activity Decoder (VAD), and back-

end, which have been implemented entirely in C++ and are capable of 

running live and performing recognitions in real time (V. Z. Këpuska and T. 

B. Klein) [1]. The aim of this research is to design and implement front-end 

with built-in VAD of WUW Speech Recognizer in hardware, which is 

responsible for generating three sets of features from the input audio signals: 
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 MFCC [Mel-frequency Cepstral Coefficients] 

 LPC [Linear Predictive Coding Coefficients] 

 ENH-MFCC [Enhanced Mel-frequency Cepstral Coefficients] 

These features need to be decoded with corresponding HMMs in the back-

end stage of the WUW Speech Recognizer.  

We aim to produce an efficient hardware front-end system with an 

FPGA portable system acting as a processor that is capable of computing 

three different sets of features at a much faster rate than software.  It is cost 

effective, consumes very little power, and it is not limited by having to 

operate on a general-purpose processor so it can be used on any portable 

device. Our state-of-the-art front-end is different from other front-end 

designs. It has the capability of computing and producing three different sets 

of features simultaneously. 

1.2 Automatic Speech Recognition 

Automatic speech recognition (ASR) is the computer’s ability to 

convert a speech audio signal into its textual transcription (Xuedong Huang, 

Alex Acero, Hsiao-Wuen Hon) [2]. Some motivations for building ASR 

systems are presented in order of difficulty to improve human-computer 

interaction through spoken language interfaces, to solve difficult problems 
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such as speech to speech translation, and to build intelligent systems that 

can process spoken language as proficiently as humans, (Ron Cole, Joseph 

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen, Antonio 

Zampolli, Victor Zue (Eds.)) [3]. 

 Speech as a computer interface has numerous benefits over 

traditional interfaces such as a Graphic User Interface (GUI) with mouse and 

keyboard. Speech is natural for humans, requires no special training, 

improves multitasking by leaving the hands and eyes free, and is often faster 

and more efficient to transmit than using conventional input methods.  

Though many tasks are solved with visual, pointing interfaces and/or 

keyboards, speech has the potential to be a better interface for a number of 

tasks where full natural language communication is useful, (Ron Cole, Joseph 

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zaenen, Antonio 

Zampolli, Victor Zue (Eds.)) [3] and the recognition performance of the 

speech recognition system is sufficient to perform the tasks accurately (V. 

Këpuska) [4] , (T. Klein) [5], in circumstances where the user wants to 

multitask while asking for assistance from the computer may include hands-

busy and eyes-busy applications where the user has objects to manipulate or 

equipment and/or devices to control. 
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1.3 Wake-Up-Word Speech Recognition 

Novel speech recognition technology named Wake-Up-Word Speech 

Recognition (WUW-SR) (V. Këpuska) [6], (V. Këpuska) [7] bridges the gap 

between natural language and other voice recognition tasks (V. Këpuska, T. 

Klein) [8]. WUW-SR is a highly efficient and accurate recognizer specializing 

in the detection of a single word or phrase when spoken in the alerting or 

WUW context (V. Këpuska, D.S. Carstens, R. Wallace) [9] of requesting 

attention, while rejecting all other words, phrases, sounds, noises and other 

acoustic events with virtually 100% accuracy including the same word or 

phrase uttered in non-alerting (referential) context. 

The WUW speech recognition task is similar to keyword spotting. 

However, WUW-SR is different in one important aspect: to the ability 

identify the specific word or phrase used in alerting context (and not other 

contexts; e.g. referential). Specifically, the sentence, ``Computer, begin 

PowerPoint presentation'' exemplifies the use of the word `’computer'’ in 

alerting context. On the other hand, in the sentence, “My computer has dual 

Intel 64-bit processors, each with quad cores'' the word ‘computer’ is used in 

a referential (non-alerting) context. Traditional keyword spotters will not be 

able to discriminate between the two cases. The discrimination will be only  

possible by deploying higher level natural language processing subsystem in 
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order to discriminate between the two. However, for applications, deploying 

such solutions is practically impossible. It is very difficult to determine in 

real-time if the user is speaking to the computer or about the computer. 

Traditional approaches to keyword spotting are usually based on large 

vocabulary word recognizers or phone recognizers (J.R. Rohlicek, W. Russell, 

S. Roukos, H. Gish) [10] , or whole-word recognizers that either use HMMs or 

word templates, (C. Myers, L. Rabiner, A. Rosenberg) [11]. Word recognizers 

require tens of hours of word-level transcriptions as well as a pronunciation 

dictionary. Phone recognizers require phone marked transcriptions and 

whole-word recognizers require word markings for each of the keywords, (A. 

Garcia, H. Gish) [12].  

The word-based keyword recognizers are not able to find words that 

are out-of-vocabulary (OOV). To solve the problem of OOV keywords, 

spotting approaches based on phone-level recognition have been applied to 

supplement or replace systems based upon large vocabulary recognition 

,(D.A. James, S.J. Young) [13]. In contrast the (V. Z. Këpuska and T. B. Klein) 

[1] approach to WUW-SR is independent to what is the basic unit of 

recognition (word, phone or any other sub-word unit). Furthermore, it is 

capable to discriminate whether or not the user is speaking to the recognizer 

without deploying language modeling and natural language understanding 
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methods. This feature makes WUW-SR task distinct from keyword spotting. 

1.3.1 Wake-Up-Word Applications  

The applications of WUW-SR are numerous, and the following 

discussion mentions some of the possibilities.  

1. Automobiles - Current voice controlled navigation systems and 

entertainment systems make use of the “push to talk” paradigm. 

WUW would enable completely hands free communication. 

2. Conference calls - In the business world it is very important to be able 

to retrieve information on the fly and dynamically manage the 

participants in a telephone conference call. Currently, adding or 

dropping users from the conference call is not a trivial undertaking 

and requires knowledge of the particular telephone system. With 

WUW, it is be possible to achieve such a dynamic control by simply 

invoking the system via the WUW and issuing the command 

thereafter. For example, “operator… <beep> connect John. 

<percolating sound>.” 

3. Smart room - With current wireless communications technology and 

microphone arrays it is possible to interface a computer to all 

appliances and electronic devices. Adding a speech interface to the 
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system would allow one to control the electronic devices in a room via 

voice commands. However, adding a speech interface is currently not 

practical because state of the art recognizers are insufficiently 

accurate and robust in the “continuously listening” mode. However, 

WUW could be used as an interface to the command & control speech 

recognizer and make this a practical solution. 

4. People with disabilities - From the onset, speech recognition 

technology have been viewed as indispensible to improve the lives of 

people with disabilities. WUW will further improve the technologies 

that these people depend on and improve the quality of their lives. 

5. Military - Through a personal communication it was conveyed that a 

military personnel was endangered due to overly restrictive usage 

requirements of automatic translation system that required its user to 

push the button when speaking to it. In order to do that, this military 

officer was required to drop his weapon to free his hands in order to 

use the device. At that moment he became vulnerable and was 

attacked.  

6. Airlines - Airplane pilots currently spend at least 30 minutes to 

program their flight plan through a tedious manual data entry 

procedure. Clearly speech recognition and more so WUW technology 
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are ideal solutions that would improve productivity of the pilot. 

7. Other Uses - Other uses of WUW include the many situations where 

it is impractical to provide manual input to computer system. 

However, current speech recognizers are not accurate and robust 

enough to accommodate the requirements of the problem. 

1.3.2 Wake-Up-Word Definition 

As explained in (V. Z. Këpuska and T. B. Klein) [1], WUW technology 

solves three major problem areas: 

1. Detecting WUW Context: The Wake-Up-Word is proposed as a 

means to grab the computer’s attention with extremely high accuracy. 

Unlike keyword spotting, the recognizer should not trigger on every 

instance of the word, but rather only in certain contexts. For example, 

if the Wake-Up-Word is “computer,” the WUW should not trigger if 

spoken in a sentence such as “I am now going to use my computer.”  

2. Identifying WUW: The Voice Activity Detector (VAD) is responsible 

for finding utterances spoken in the correct context and segmenting 

them from the rest of the audio stream. After the VAD makes a 

decision, the next task of the system is to identify whether or not the 

segmented utterance is a WUW. 
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3. Correct Rejection of Non-WUW: The final and critical task of a 

WUW system is correctly rejecting Out-Of-Vocabulary (OOV) speech. 

The WUW-SR system should have a correct rejection rate of virtually 

100% while maintaining high correct recognition rates of over 99%. 

1.3.3 WUW-SR Different from other SR Systems 

Wake-Up-Word is often mistakenly compared to other speech 

recognition tasks such as keyword spotting or command and control; but 

WUW-SR is different from the previously mentioned tasks in several 

significant ways. The most important characteristic of a WUW-SR system is 

that it should guarantee virtually 100% correct rejection of non-WUW and 

same words uttered in non-alerting context while maintaining correct 

acceptance rate over 99%. This requirement sets WUW-SR apart from other 

speech recognition systems because no existing system can guarantee 100% 

reliability by any measure without significantly lowering its correct 

recognition rate. It is this guarantee that allows WUW-SR to be used in novel 

applications that previously have not been possible. Secondly, a WUW-SR 

system should be context dependent; that is, it should detect only words 

uttered in alerting context. Unlike keyword spotting, which tries to find a 

specific keyword in any context, the WUW should only be recognized when 
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spoken in the specific context of grabbing the attention of the computer in 

real time. Thus, WUW recognition can be viewed as a refined, albeit 

significantly more difficult, keyword-spotting task. Finally, WUW-SR should 

maintain high recognition rates in speaker-independent or speaker-

dependent mode and in various acoustic environments (V. Z. Këpuska and T. 

B. Klein) [1]. 

1.3.4 Significant of WUW-SR 

The reliability of WUW-SR opens up the world of speech recognition 

to applications that were previously impossible. Today's speech-enabled 

human-machine interfaces are still regarded with skepticism and people are 

hesitant to entrust any significant or accuracy-critical tasks to a speech 

recognizer. 

Despite the fact that Speech Recognition is becoming almost 

ubiquitous in the modern world, widely deployed in mobile phones, 

automobiles, desktop, laptop, and palm computers, many handheld devices, 

telephone systems, etc., the majority of the public pays little attention to 

speech recognition. Moreover, the majority of speech recognizers use the 

push to talk paradigm rather than continuously listening, simply because 

they are not robust enough against false-positives. One can imagine that the 
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driver of a speech-enabled automobile would be quite unhappy if his or her 

headlights suddenly turned off because the continuously listening speech 

recognizer misunderstood a phrase in the conversation between driver and 

passenger. 

The accuracy of speech recognizers is often measured by Word Error 

Rate (WER), which uses three measures, (Xuedong Huang, Alex Acero, 

Hsiao-Wuen Hon) [2]: 

 Insertion (INS) _ an extra word was inserted in the recognized 

sentence. 

 Deletion (DEL) _ a correct word was omitted in the recognized 

sentence. 

 Substitution (SUB) _ an incorrect word was substituted for a correct 

word. 

WER is defined as: 

 

Substitution errors or equivalently correct recognition in WUW 

context represent the accuracy of the recognition, while insertion + deletion 

errors are caused by other factors; typically erroneous segmentation. 

However, WER as an accuracy measurement is of limited usefulness to 

a continuous listening command and control system. To understand why, 



14 

 

consider a struggling movie director who cannot afford a camera crew and 

decides to install a robotic camera system instead.  

The system is controlled by a speech recognizer that understands four 

commands: “lights”, “camera”, “action”, and “cut”. The programmers of the 

speech recognizer claim that it has 99% accuracy, and the director is eager to 

try it out. When the director sets up the scene and utters “lights”, “camera”, 

“action”, the recognizer makes no mistake, and the robotic lights and 

cameras and spring into action. However, as the actors perform the dialogue 

in their scene, the computer misrecognizes “cut” and stops the film, ruining 

the scene and costing everyone their time and money. The actors could only 

speak 100 words before the recognizer, which truly had 99% accuracy, 

triggered a false acceptance. 

This anecdote illustrates two important ideas. First, judging the 

accuracy of a continuously listening system requires using a measure of 

“rejection”. That is, the ability of the system to correctly reject out-of-

vocabulary utterances. The WER formula incorrectly assumes that all speech 

utterances are targeted at the recognizer and that all speech arrives in 

simple, consecutive sentences. Consequently, performance of WUW-SR is 

measured in terms of correct acceptances (CA) and correct rejections (CR). 

Because it is difficult to quantify and compare the number of CRs, rejection 
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performance is also given in terms of “false acceptances per hour”. 

The second note of interest is that 99% rejection accuracy is actually a 

very poor performance level for a continuously listening command and 

control system. In fact, the 99% accuracy claim is a misleading figure. While 

99% acceptance accuracy is impressive in terms of recognition performance, 

99% rejection implies one false acceptance per 100 words of speech. It is not 

uncommon for humans to speak hundreds of words per minute, and such a 

system would trigger multiple false acceptances per minute. That is the 

reason why today's speech recognizers: a) primarily use a “push to talk” 

design and b) are limited to performing simple convenience functions and 

are never relied on for critical tasks. On the other hand, experiments have 

shown the WUW-SR implementation presented in Këpuska & Klein, 2009 

work reach up to 99.99% rejection accuracy. That translates to one false 

acceptance every 2.2 h (V. Z. Këpuska and T. B. Klein) [1]. 

1.3.5 Wake-Up-Word-SR Implementation 

The concepts of WUW-SR have been most expanded in A novel 

Wake-Up-word speech recognition system, Wake-Up-Word recognition task, 

technology and evaluation (V. Z. Këpuska and T. B. Klein) [1]. Currently, the 

system is implemented in C++ as well as JAVA. The WUW Speech Recognizer 
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consists of three stages. The first is front-end (audio signal preprocessing) 

stage, described with VAD in more detail below as it is our goal in this 

dissertation. It takes a speech waveform as its input, and extracts from it 

three different sets of features: MFCC, LPC, and ENH-MFCC. Features 

represent the information required to perform recognition in the back-end 

stage S.P. Davis, P. Mermelstein) [14], (John Makhoul) [15]. 

The second stage is Voice Activity Detector (VAD), which is 

performed using a set of statistical models called Hidden Markov Models 

(HMM). VAD segments the signal into speech and non-speech regions. 

The third stage is back-end. The back-end is responsible for classifying 

observation sequences as in-vocabulary (INV), (i.e. the sequence of frames 

hypothesized as a segment is a Wake-Up-Word), or out of vocabulary 

(OOV), (i.e. the sequence is not a Wake-Up-Word). The WUW-SR system 

uses a combination of HMM and Support Vector Machines (SVM) for 

acoustic modeling and, as a result the back-end, consists of an HMM 

recognizer and a SVM classifier. Prior to recognition, HMM and SVM models 

must be created and trained for the word or phrase which is to be the wake-

up-word. When the VAD state changes from VAD_OFF to VAD_ON, the 

HMM recognizer resets and prepares for a new observation sequence. As 

long as the VAD state remains VAD_ON, feature vectors are continuously 
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passed to the HMM recognizer, where they are scored using the novel triple-

scoring method. If using multiple feature streams, recognition is performed 

for each stream in parallel. When VAD state changes from VAD_ON to 

VAD_OFF, multiple scores are obtained from the HMM recognizer and are 

sent to the SVM classifier. SVM produces a classification score which is 

compared against a threshold to make the final classification decision of INV 

or OOV. 

1.3.5.1 Front End Signal Processing 

Front-end signal processing plays a crucial role in the realization of 

speech recognition systems. This is the result of the fact that better signal 

feature extraction leads to better recognition performance. The goal of front-

end signal processing is to extract relevant feature parameters of speech, 

which are more suitable for the purpose of speech recognition than the input 

speech waveform itself in terms of information rate and redundancy 

reduction. Therefore, intensive efforts have been carried out to achieve a 

high performance front-end. WUW-SR system makes use of the modulation 

applied by the vocal tract (throat, tongue, teeth, lips and nasal cavity); the 

excitation produced by the larynx is not used, even though humans infer 

much information from it. (Note that in a number of Far-Eastern languages, 
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the inflection of a syllable can profoundly affect its meaning, requiring this 

information to be retained, (Lee, L.S., Tseng, C.Y., Lin, Y.H., Lee, Y., Tu, S.L., 

Gu, H.Y., Liu, F.H., Chang, C.H., Hsieh, S.H., Chen, C.H. & Huang, K.R)) [16]. 

1.4 Field-Programmable Gate Arrays (FPGAs) 

The field-programmable gate arrays (FPGA) is a semiconductor device 

that can be programmed after manufacturing. Instead of being restricted to 

any predetermined hardware function, an FPGA allows you to program 

product features and functions, adapt to new standards and reconfigure 

hardware for specific applications even after the product has been installed 

in the field—hence the name "field-programmable". You can use an FPGA to 

implement any logical function that an application-specific integrated circuit 

(ASIC) could perform, but no ability to update the functionality after 

shipping offers advantages for many applications. 

Unlike previous generation FPGAs using I/Os with programmable 

logic and interconnects, today's FPGAs consist of various mixes of 

configurable embedded SRAM, high-speed transceivers, high-speed I/Os, 

logic blocks, and routing. Specifically, an FPGA contains programmable logic 

components called logic elements (LEs) and a hierarchy of reconfigurable 

interconnects that allow the LEs to be physically connected. You can 
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configure LEs to perform complex combinational functions, or merely simple 

logic gates like AND and XOR. In most FPGAs, the logic blocks also include 

memory elements, which may be simple flip flops or more complete blocks of 

memory. 

As FPGAs continue to evolve, the devices have become more 

integrated. Hard intellectual property (IP) blocks built into the FPGA fabric 

provide rich functions while lowering power and cost and freeing up logic 

resources for product differentiation. Newer FPGA families are being 

developed with hard embedded processors, transforming the devices into 

systems on a chip (SoC), (Altera, Inc) [17]. 

A field-programmable gate array (FPGA) is a form of programmable 

logic device (PLD).It typically consists of a rectangular array of configurable 

logic blocks (CLBs). Each CLB can contain assorted logic resources such as 

look-up tables (LUTs) capable of implementing any desired Boolean function 

and dedicated arithmetic logic such as carry chain logic, registers, latches, 

shift registers, distributed memories, and so on. 

The resources within a CLB can be configured as required. Similarly, 

the data lines that link the resources within the CLB can be configured in 

order to connect them together in particular ways. The CLB array itself is 

immersed in a web of configurable routing, allowing the CLBs to be 
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connected in myriad ways. 

There is currently a trend towards combining fixed-function logic 

with reconfigurable logic, producing a so-called “system on a chip” (SoC). 

This started with the inclusion of blocks of dedicated RAM — themselves 

configurable with regard to the widths of their address and data buses — and 

now includes dedicated multipliers, DSP blocks, and processor cores, 

(Melnikoff, S.J) [18]. 

The field-programmable part of an FPGA comes from the fact that 

FPGAs can be programmed and reprogrammed in situ, without having to be 

removed from their target PCB and placed in a chip programmer every time a 

new design needs to loaded, as is the case with some other types of 

Programmable Logic Device (PLD). Most FPGAs are now SRAM based, and 

so require a separate ROM to store their configuration data, as they are 

unable to retain this data themselves when switched off. With so many 

resources at the designer’s disposal, an FPGA provides a very powerful 

platform for hardware development. Its flexibility allows for all manner of 

complex designs; its numerous resources allow for a great deal of parallelism, 

if the application allows it, and its ability to be reprogrammed without 

limitation makes it an invaluable tool for hardware development. This is not, 

however, the only thing that FPGAs are good for. Making ASICs is a very 
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expensive process, and as feature size shrinks, the cost of producing the die is 

increasing. 

The economics are such that a manufacturer needs to expect to ship a 

very large number of chips before producing an ASIC becomes cost effective 

which currently of the order of hundreds of thousands for the smaller feature 

sizes, and continuing to rise, (Makimoto, T ) [19], (Makimoto, T ) [20]. For 

smaller quantities, an FPGA or other PLD is cheaper. Additionally, an FPGA’s 

in-system programmability can be put to other uses. Unlike an ASIC, the 

FPGA’s design can be updated after the PCB has been made and populated 

and after the product has been deployed; akin to software patches being 

downloaded after a product has been shipped. 

Taking this a stage further, one chip can be supplied with a library of 

designs, enabling it to perform different functions depending on the 

situation. For example, an FPGA could be used as part of a communications 

subsystem, with different configurations for different protocols, allowing 

hardware acceleration for all of them with just one chip. 

Some FPGAs allow parts of the device to be reconfigured, while 

leaving the rest of the chip untouched. The suggestion has therefore been 

made for run-time reconfiguration (RTR) (e.g., (Laufer, R., Taylor, R.R. & 

Schmit, H., “PCI-PipeRench and the SWORDAPI) [21], (Sezer, S., Heron, J., 
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Woods, R., Turner, R. & Marshall, A)) [22], where some or all of the chip is 

reprogrammed at run time, provides more processing power than might 

otherwise be available. 

Unfortunately, RTR has not been as successful as hoped for a number 

of reasons. Firstly, the reconfiguration times for FPGAs, particularly the 

larger ones, is along the order of milliseconds, which is a lifetime for devices 

that can operate at hundreds of megahertz. To illustrate this, (James-Roxby 

and Blodget) [23] use RTR to update the contents of LUTs configured as 

ROMs, and compares this with the alternative of configuring them as RAMs 

instead. The authors report that while the RAM-based design has a slower 

clock-speed and uses more resources, the LUTs can be updated much faster, 

by a factor of over 100. 

Secondly, for partial reconfiguration, reprogramming one chunk of an 

FPGA affects the routing in neighboring areas, and there is currently no 

obvious solution as to how to deal with that. The problem can be sidestepped 

by limiting the reconfiguration to replacing the contents of LUTs or RAM, or 

by constraining the placement of logic resources so that no routing crosses 

areas that will be reconfigured. 

Thirdly, any complex chip relies heavily on the software that supports 

it and current tools have limited support for RTR-based designs. FPGA 
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design software continues to improve, but still requires a lot of skill of the 

designer. indeed, the question of whether adapting software languages in 

order to make it easier for software engineers to produce FPGA designs (“C-

to-gates”) is an ongoing debate. 

Additionally, a commercial slant is mentioned in, (IEE, “FPGAs not 

ready to go embedded,” IEE Review, Institution of Electrical Engineers, April 

2003) [24]: “There’s no market for reconfigurability [right now]. There is a 

degree of reconfigurability in cellular systems, as in for changing the 

protocols as you move between countries, but that is a specialist area and is 

done by software. The case of design reconfigurability in hardware is yet to 

be proved, as software is a pretty good way of achieving reconfigurability.” 

At present, FPGAs’ power-hungry nature makes them unsuitable for 

mobile devices. However, once that changes, their versatility and ability to be 

repeatedly updated—even if only once in a while—could see them become 

much more widespread than they are now, (Melnikoff, S.J) [18]. 

1.5 Motivation 

Some motivations for building Automatic Speech Recognition (ASR) 

systems, presented in order of difficulty, are to improve human-computer 

interaction through spoken language interfaces, to solve difficult problems 
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such as speech-to-speech translation, and to build intelligent systems that 

can process spoken language as proficiently as humans,  (Ron Cole, Joseph 

Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie  Zaenen, Antonio 

Zampolli, Victor Zue (Eds.)) [3]. Speech as a computer interface has 

numerous benefits over traditional interfaces using mouse and keyboard: 

speech is natural for humans and requires no special training, improves 

multitasking by leaving the hands and eyes free, and is often faster and more 

efficient to transmit than the information provided than using conventional 

input methods. Human-machine interaction is likely to take place in natural 

language in future embedded systems and mobile devices. Speech enabled 

car navigation; natural language e-learning applications and home 

automation are among those applications. This inherits all the embedded 

systems design constraints to the speech recognition domain, like limited 

hardware, memory, power consumption and cost, which creates the need to 

re-architecture the already existing speech recognition systems (V. Z. 

Këpuska and T. B. Klein) [1]. The-State-of-the-art WUW-SR is heading 

towards embedded systems and hand-held devices. WUW-SR front-end 

system architecture emerged to address these kinds of applications. The 

existing implementation of this system is presented in software fashion, with 

little consideration to the end product platform in which the system will be 
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deployed. In this dissertation, a hardware implementation of the front-end of 

WUW-SR is specified and presented in FPGA platform prototype, with 

consideration of migration to structure ASIC in case of mass production.  

Finally: Why use an FPGA? It was originally suggested that this project 

make use of an FPGA. While there  are much excitement (in academic 

circles, at least) that the FPGA’s unique ability to be reconfigured on the fly 

could be put to great use, the challenge of doing so and the unlimited 

support of the tools, combined with the ever-increasing quantity of resources 

available on the device, has seen the idea pushed forward, the FPGA’s great 

value has been shown in its use as a prototyping platform, either as a 

stepping-stone on the path to an ASIC, or as an end in itself, where an ASIC 

is either undesirable or uneconomical. 

To conclude, even though processor power is always increasing, ASICs 

and programmable logic devices are subject to the same improvements in 

technology. Therefore, whatever we can improve using software; we should 

also be able to improve by using hardware. 
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2 Speech Recognition System on Programmable Chip 

It is only in the last few years that desktop PCs have been powerful 

enough to allow large-vocabulary continuous speech recognition to be 

performed in real time in software. 

At present, for best results, systems still rely on being trained to 

recognize one speaker, with minimal background noise. Even then, steps 

have to be taken in order to reduce the computational complexity so that real 

time recognition is feasible. Before this was possible, or when it was 

necessary to try out more complex algorithms, only hardware had the 

computational resources to achieve this.  

Initially, hardware implementations tended to be based on parallel 

arrays of one kind or another, often using custom chips. As the technology 

has improved, the focus has shifted towards serial implementations, once 

again making use of custom chips, microcontrollers or DSPs, since the 

appearance of the FPGA has been used as an experimental platform  

(Melnikoff, S.J) [18]. 

One of the three principal stages of the speech recognition process, it 

is the decoding part that takes center stage in hardware implementations. 

Pre-processing tends to be performed in software, or left to a DSP (G´omez-
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Cipriano, J.L., Pizzatto Nunes, R., Bampi, S. & Barone, D (2001)) [25] use an 

FPGA for feature extraction. 

As a matter of fact, the increased processing power now offered by 

processors and ASICs — not to mention the lower cost — has led to a shift 

towards such devices. 

(Shozakai (1999)) [26] uses an ASIC containing a DSP core for feature 

extraction and Gaussian computations, and a RISC microprocessor core for 

the Viterbi decoding. Tied mixture Gaussian mixtures are used, with 54 

Japanese monophone HMMs, (Nakamura, K., Zhu, Q., Maruoka, S., 

Horiyama, T., Kimura, S. & Watanabe, K) (2001)) [27] describe an embedded 

system incorporating an ASIC which also performs observation feature 

extraction and Viterbi decoding. Discrete HMMs of 5 states each, 

representing 64 monophones, are used. An FPGA is used for training. The 

authors report that the hardware, running at 17 MHz, can perform 

recognition in real time. They add that if their ASIC were operating at the 

same speed as the processor used for testing equivalent software (Pentium III 

750), the ASIC would be 5.3 times faster. 

In contrast to this, , (Shi, Y.Y., Liu, J. & Liu, R.S) (2001) [28] employs an 

ASIC containing an 8051 core for almost all the processing, including feature 

extracting, with only the minimum of support logic (mainly for analogue-
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digital conversion). The rationale of not using a DSP core is that they are 

expensive in comparison—but the trade-off is the reduced processing power 

available. The system performs both training and recognition. The authors 

state that the chip is capable of accuracy above 90% for a constrained 

vocabulary. 

What is clear from these implementations is that, although a system-

on-chip design can recognize speech, current designs only have enough 

processing power to cope with small vocabularies and the simpler types of 

models. 

2.1 Speech Recognition Software vs. Hardware Design 

Providing a compromise between the processing power of hardware 

and the flexibility of software, the emergence of FPGAs in the 1990s provided 

a new platform for the development of speech recognition systems. 

(Schmit & Thomas (1995)) [29] present an early FPGA implementation 

of an HMM based application, on a Xilinx 4000-series device. In this case, 

they use Viterbi decoding to correct errors made by a person typing, 

resulting in a system 25 times faster than equivalent software. 

(Vargas, F.L., Fagundes, R.D.R. & Junior, D.B (2001)) [30] uses two 

Altera FPGAs to implement a simple isolated word recognition system. The 
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model uses up to 10 words, with 6 states per discrete HMM. They take 

advantage of parallelism within the Viterbi algorithm to achieve a speedup 

over software in the order of 500 times, with accuracies for this task 

approaching 100%. 

A novel implementation is demonstrated by (Jou, J.M., Shiau, Y.H. & 

Huang, C.J. (2001)) [31] who proposed an “efficient VLSI architecture,” 

prototyped on an FPGA. It takes advantage of the left-right nature of HMM 

state machines used in speech recognition by merging every four columns of 

the Viterbi trellis into one. The authors state that this approach saves on 

time and resources. While this could be useful for faster-than-real-time 

transcription, there is likely to be little gain when processing real-time 

speech, as the system would have to wait for the same amount of time 

between new observations whether it was processing one or four at a time. 

(Stogiannos, P., Dollas, A. & Digalakis, V. (2000)) [32], based on 

(Stogiannos, P (1999)) [33]. They use discrete-mixture HMMs, in which the 

elements of the observation vector are quantized in advance, allowing the 

probability associated with each element to be looked up in an off-chip 

codebook, rather than calculated. These values (in the log domain) are then 

summed, converted to the linear domain using another look-up, and further 

summation takes place (as for Gaussian mixtures). The conversion back to 
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the log domain and the Viterbi decoding are performed in software. This 

approach uses a lot of external RAM: 64 Mb of SDRAM for the codebook 

values, and 512 Kb of SRAM for the domain conversion (organized as four 128 

Kb LUT look-up tables). 

In contrast, all but one of the designs (described later) use continuous 

probability distributions, and computes the mixture components on the 

FPGA. Use of an alternative algorithm removes the need for a domain 

conversion for the mixture component summation, greatly reducing the large 

storage and bandwidth requirements inherent in a RAM-based 

implementation. In addition, the Viterbi decoding is performed in hardware. 

In all cases, the designs take advantage of more recent devices which 

are faster and have more resources available. The system is designed for an 

Altera FLEX 10KE running at 66MHz.  

As now, one of the key points is the use of FPGAs as a more cost-

effective solution for low-volume applications, though at the expense of 

lower processing speeds as ASICs. 

2.2 Commercial Speech Recognition Systems 

A small number of commercial speech recognition ASICs are exist, 

such as (Sensory’s RSC-300/RSC-364 and RSC4x family) [34], which use a 
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RISC microprocessor with a neural network; their Voice Direct 364, which is 

also based on a neural network; and (Philips’ SBF1005 HelloIC) [35], which is 

based on a DSP. All three are designed for applications requiring a small 

vocabulary (typically 60 words or less), and boast a speaker-independent 

recognition accuracy of 97% or more. (Further performance comparisons are 

not possible due to a lack of suitable information). 

While recognition chips and intellectual property (IP) cores only 

handle small vocabularies,; their prevalence in toys, automotive applications 

and mobile phones suggests that the market for such devices in embedded 

and mobile systems will continue to increase as ,(Frostad, K.) [36], (Mozer, T) 

[37] noted. 

With regards to FPGAs, there are no cores designed specifically for 

speech recognition. However, cores do exist for performing Viterbi decoding 

for signal processing, such as those produced by (TILAB) [38] and (Xilinx) 

[39]. In addition, some DSPs have dedicated logic for Viterbi decoding, like 

the( Texas Instruments) [40] TMS320C6416, and the TMS320C54x family. 

In both cases, however, these decoders are designed for signal 

processing applications, which have different requirements from speech 

recognition, including narrower data widths, different data formats, and 

fewer states. 
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2.3 Alternative Speech Recognition Methods 

The hidden Markov model is by far the dominant underlying 

algorithm used in speech recognition systems, both commercially and in 

research. However, there are alternatives that provide a useful comparison. 

Dynamic time warping (DTW), (Cox, S.J) [41] predates HMMs, and is 

in fact a special case of HMMs. It works by comparing two utterances, 

stretching or compressing one (warping) in order to try and match it to the 

other. The degree to which the utterance is warped determines a value 

without transition probabilities, and with observation probabilities replaced 

by a distance metric (typically Euclidean or “Manhattan”). This value must be 

minimized in order to find the most likely match. 

DTW was superseded by HMMs because the former provides less 

flexibility, as it cannot be made more robust by training on large amounts of 

data. Conversely, it has a use where data is limited, as a single utterance can 

be used as a template in lieu of training data. 

Its relative simplicity was of use when implemented by (Shi, Y.Y., Liu, 

J. & Liu, R.S)(2001) [28], as described above. 

Also mentioned earlier were neural networks. Rather than use any 

particular algorithm, a neural network is trained on a set of template patterns 

(e.g. a set of words used for command and control application). It is then 
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sent data extracted from incoming speech, and the data is compared to the 

templates. The neural network selects the most likely template or number of 

most likely candidates, with a final one being chosen after further processing. 

Neural networks are simple to train, but their pattern-matching 

abilities are limited. They are suitable for recognizing a small number of 

isolated words, but they cannot cope with large-vocabulary continuous 

speech. Their inherent parallelism, however, does make them suitable for 

implementations in hardware, such as the FPGA version described by 

(Eldredge, J.G. & Hutchings, B.L., “RRANN (1994)) [42]. A more general 

approach is presented by (Chen, R. & Jamieson, L.H (1996)) [43]. 

Finally, a more unusual approach is introduced by (Bohez, E.L.J. & 

Senevirathne, T.R (2001)) [44]. 

They use fractals for clustering phonemes, and report that this 

method is good for endpoint detection and segmentation, but not dealing 

with whole words. It is suggested that this method on its own is not suitable 

for recognition, but could be used in conjunction with other techniques. 
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2.4 The-State-Of-The-Art Wake-Up-Word Speech Recognition 

Having looked at how parts of the recognition process have been 

implemented before, it is now time to propose new designs, inspired and 

based on the theories described above. 

Wake-Up-Word speech recognition system is a new paradigm in 

speech recognition that is not yet widely recognized, WUW-SR is defined as 

detection of a single word or phrase when spoken in the alerting context of 

requesting attention, while rejecting all other words, phrases, sounds, noises 

and other acoustic events and the same word or phrase spoken in non-

alerting context with virtually 100% accuracy. 

Novel speech recognition technology named Wake-Up-Word (WUW) 

(V. Këpuska) [6], ( V. Këpuska) [7] bridges the gap between natural-language 

and other voice recognition tasks (V. Këpuska, T. Klein) [8]. WUW-SR is a 

highly efficient and accurate recognizer specializing in the detection of a 

single word or phrase when spoken in the alerting or WUW context, (V. 

Këpuska, D.S. Carstens, R. Wallace) [9] of requesting attention, while 

rejecting all other words, phrases, sounds, noises and other acoustic events 

with virtually 100% accuracy including the same word or phrase uttered in 

non-alerting (referential) context. The WUW speech recognition task is 

similar to keyword spotting; however, WUW-SR is different in one important 
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aspect: to the ability discriminates the specific word or phrase used only in 

alerting context, not referential (e.g. conversational) context. Traditional 

keyword spotters will not be able to discriminate between the two cases. The 

discrimination will be only possible by deploying higher level natural-

language processing subsystem in order to discriminate between the two. 

When deploying such solutions in applications it is nearly impossible to 

determine, in real–time, if the user is speaking to the computer or about the 

computer. 

WUW speech recognizer is a highly efficient and accurate recognizer, 

specializing in the detection of a single word or phrase when spoken in the 

context of requesting attention (alerting), while rejecting the same word or 

phrase spoken under referential (non-alerting) context. It rejects all other 

words, phrases, sounds, noises and other acoustic events with virtually 100% 

accuracy. This high accuracy enables development of speech recognition 

driven interfaces that utilize dialogs using speech only. 

One of the goals of speech recognition is to allow natural 

communication between humans and computers via speech, (Ron Cole, 

Joseph Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie  Zaenen, 

Antonio Zampolli, Victor Zue (Eds.)) [3], where natural speech implies 

similarity to the ways humans interact with each other on a daily basis. A 
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major obstacle to this is the fact that most systems today still rely to large 

extent on non-speech input, such as pushing buttons or mouse clicking. 

However, much like a human assistant, a natural speech interface must be 

continuously listening and must be robust enough to recover from any    

communication errors without non-speech intervention. 

Speech recognizers deployed in continuously listening mode are 

constantly monitoring acoustic input and do not necessarily require non-

speech activation. This contrasts with the push to talk model, in which 

speech recognition is only activated when the user pushes a button. 

Unfortunately, today's continuously listening speech recognizers are not 

reliable enough due to their insufficient accuracy, especially in the area of 

correct rejection. For example, such systems often respond erratically, even 

when no speech is present. They sometimes interpret background noise as 

speech, and they sometimes incorrectly assume that certain speech is 

addressed at the speech recognizer when in fact it is targeted elsewhere 

(context misunderstanding). These problems have traditionally been solved 

by the push to talk model: requesting the user to push a button immediately 

before or during talking or similar prompting paradigm. 

Wake-Up-Word speech recognizers are often mistakenly compared to 

other speech recognition tasks such as keyword spotting or command and 
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control, but WUW speech recognizer is different from the previously 

mentioned tasks in several significant ways. The most important 

characteristic of a WUW-SR system is that it should guarantee virtually 100% 

correct rejection of non-WUW and same-words-uttered in non-alerting 

context while maintaining correct acceptance rate over 99%. This 

requirement sets apart WUW-SR from other speech recognition systems 

because no existing system can guarantee 100% reliability by any measure 

without significantly lowering correct recognition rate. It is guarantee that 

allows WUW-SR to be used in novel applications that previously have not 

been possible. Second, a WUW-SR system should be context dependent; that 

is, it should detect only words uttered in alerting context. Unlike keyword 

spotting, which tries to find a specific keyword in any context, the WUW 

should only be recognized when spoken in the specific context of grabbing 

the attention of the computer in real time. Thus, WUW speech recognition 

system can be viewed as a refined keyword spotting task, albeit significantly 

more sophisticated. Finally, WUW-SR should maintain high recognition 

rates in speaker-independent or speaker-dependent mode and in various 

acoustic environments (V. Z. Këpuska and T. B. Klein) [1]. 
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2.4.1 Front End of Wake-Up-Word Speech Recognition 

The concepts of WUW have been most recently expanded in  (V. Z. 

Këpuska and T. B. Klein) [1].Currently, the system is implemented in C++ as 

well as JAVA, and provides three major components for achieving the goals 

of WUW for use in a real-time environment: front-end, VAD, and back-end. 

The front-end is responsible for extracting three different sets of features 

from an input audio signal. The Voice Activity Detector (VAD) segments the 

signal into speech and non-speech regions. Finally, the back-end performs 

recognition and scoring.  

The WUW Speech Recognizer is a very complex digital system. As 

mentioned previously, the pre-processing can be done using FPGA, dedicated 

DSPs, or in software. The backtracking process requires large amounts of 

data storage, and indexing operations, for which software is better suited. It 

is the recognition part (including Viterbi decoding), and in particular the 

computation of observation probabilities, that requires a significant number 

crunching and for which no suitable device currently exists.  Therefore, the 

front-end with built-in VAD has been the subject of our research resulting in 

the hardware designs presented in this dissertation. In a typical automatic 

speech recognition system, a signal processing front-end transforms the 

speech waveform from an input device, such as a microphone, to a 
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parametric representation. 

This parametric representation, often referred to as “features”, is then 

used to drive the speech recognition decoder process. The generation of 

MFCC is one of the most widely used algorithms (L. Rabiner and B. H. Juang) 

[45], (S. Davis and P. Mermelstein) [46], (Ngoc-Vinh Vu, Jim 

Whittington, Hua Ye, and John C. Devlin) [47] to implement a front-end. 

Although there are some attempts to implement MFCC in hardware 

(J.-C. Wang, J.-F. Wang, and Y.-S. Weng) [48], (W. Han, C.-F. Chan, C.-S. 

Choy, and K.-P. Pun) [49], most existed work on MFCC tends to focus on the 

improvement of the recognition performance. Since the core MFCC 

algorithm requires a substantial amount of calculation, implementing it in 

low-end hardware and keeping the design low-cost remains a challenge. In 

(Nedevschi, S., Patra, R., Brewer, E) [50], and (Melnikoff, S., Quigley, S.F., 

Rusell, M. J) [51], presented only hardware implementations of some specific 

part of algorithms for speech recognition or speaker identification that allow 

a significant acceleration of the processing time. 

In our research, we designed and implemented the front-end part of 

the WUW-SR system in FPGA. We produced a new feature extraction system 

based on the three different features: MFCC, LPCC, and Enhanced MFCC. 

The proposed solution is optimized for modest resource usage, which makes 
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it suitable for a low-cost VLSI or FPGA device. This design not only has a 

relatively low resource usage, but also maintains a reasonably high level of 

performance. 
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3 Wake-Up-Word-SR System Architecture 

The WUW Speech Recognizer is a complex system comprising of 

three major parts: Front- end, VAD, and Back-end. The Front-end is 

responsible for extracting three different sets of features from an input audio 

signal. The VAD (Voice Activity Detector) segments the signal into speech 

and non-speech regions. Finally, the back-end performs recognition and 

scoring. The diagram below shows the overall procedure. 

 

Figure 3.1 – Wake-Up-Word-Speech Recognition Overall Architecture 
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We present an experimental FPGA design and implementation of a 

novel architecture of a real time feature extraction processor that generates 

MFCC, LPC, and ENH_MFCC features simultaneously. In the WUW-SR 

system, the recognizer front-end is located at the terminal which is typically 

connected over a data network to remote back-end recognition (e.g., server). 

The three sets of feature extraction of speech (MFCC, LPC, and ENH-MFCC) 

are performed at the front-end. These extracted features are then 

compressed and transmitted to the server via a dedicated channel, where 

subsequently they are decoded.  

The front-end system process takes an input pressure waveform 

(audio signal) and output a sequence of characteristic parameters MFCCs, 

LPCs, and ENH-MFCCs features. Whereas the back-end process, which is the 

recognition component, takes the characteristic sequence and outputs an 

index of the recognized command. 

The signal processing module accepts raw audio samples and 

produces spectral representations of short time (t) signals. The feature-

extraction module generates features from this spectral representation, 

which are decoded with the corresponding hidden Markov models (HMMs). 

The individual feature scores are classified using support vector machines 

(SVMs). INV, OOV: in-, out-of-vocabulary speech. 
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3.1 Front End of Wake-Up-Word Speech Recognition 

As shown in the diagram below the front-end processor is responsible 

for extracting three different sets of features out of the input signal 

simultaneously. These sets of features are extracted: Mel-filtered Cepstral 

Coefficients (MFCC), LPC (Linear Predictive Coding) smoothed MFCCs, and 

Enhanced MFCCs. 

 

Figure 3.2 – Front-end, Voice Activity Detector, and Back-end 

 

The following steps describe the feature extraction process: 

1. Audio signal is converted from analog to digital 

2. DC is filtered out and pre-emphasis filter is applied to signal 

3. Audio signal is converted from integer to 32-bit floating point 

format 
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4. Signal is windowed using 25ms Hamming window at a rate of 200 

windows per second. At a sample rate of 8000 Hz this indicates a 

window size of 200 samples, shifted by 40 samples each frame 

5. Frame energy is computed and sent to VAD module 

6. LPC, FFT, and magnitude squared spectrum are computed 

7. Spectrum is sent to VAD module 

8. Mel-filtering, discrete cosine transform are computed 

9. MFCCs are sent to VAD module 

10.  Frames are buffered for a delay of 20-30 frames in order for VAD 

to make a decision 

11. VAD decision is used for MFCC enhancement process, ENH-MFCC 

are computed 

3.2 Voice Activity Detector (VAD) of WUW-SR 

The Voice Activity Detector is responsible for segmenting the signal 

into speech and non-speech segments as shown in Figure 3.3. For any given 

frame, VAD reports one of two possible states: VAD_ON or VAD_OFF. Word 

recognition in the Back-end stage begins when the VAD enters VAD_ON 

state, and ends when the VAD switches to VAD_OFF. VAD works in two 

phases. In the first phase, a classifier decides whether a single input frame is 
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speech-like or non-speech-like. In the second phase, the number of speech-

frames and non-speech-frames over a period of time is analyzed and certain 

rules are applied to report the final decision of VAD_ON or VAD_OFF. 

The following image shows “Onward” waveform as input audio data 

superimposed with its VAD segmentation, its MFCC spectrogram, LPC 

spectrogram, and enhanced-MFCC spectrogram. 

 

Figure 3.3 – Speech signal with VAD segmentation, MFCC spectrogram, LPC 

spectrogram, and ENH-MFCC spectrogram 

3.2.1 First VAD Phase - Single Frame Speech/Non-Speech Classification 

First, for every input frame VAD decides whether the frame is speech-

like or non-speech-like. Several hardware models have been implemented 

and tested for solving this problem. 

In the VAD design, the decision was made based on three features: log 

energy difference (Energy Features), LPC spectral difference (LPC 
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Spectrogram Features), and MFCC difference (MFCC Features). A threshold 

was determined empirically for each feature, and the frame was considered 

speech-like if at least two out of the three features were above the threshold. 

This was in effect a Decision Tree classifier, and the decision regions 

consisted of hypercube in the feature space. 

In order to improve the VAD classification accuracy, the VAD 

implementation uses the three features: log energy difference, LPC spectral 

difference, and MFCC difference; however, classification is performed using a 

linear Support Vector Machine (SVM). There are several advantages over 

using this method. First, the classification boundary in the feature space is a 

hyper plane, which is more robust than the hypercube produced by the 

decision tree method. Second, the thresholds do not have to be picked 

manually but can be trained automatically (and optimally) using marked 

input files. Third, the sensitivity can be adjusted in smooth increments using 

a single parameter, the SVM decision threshold. Recall that the output of a 

SVM is a single scalar,        . Usually the decision threshold is set 

at     , but it can be adjusted in either direction depending on the 

requirements. Finally, the linear SVM kernel is extremely efficient, because 

classification of new data requires just a single dot product computation. 
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3.2.2 Second VAD Phase – Final Decision Logic 

In the second phase, the VAD keeps track of the amount of frames 

marked as speech and non-speech and makes a final decision. There are four 

parameters:  

MIN_VAD_ON_COUNT, MIN_VAD_OFF_COUNT, LEAD_COUNT, and 

TRAIL_COUNT.  

The logic requires a number of consecutive frames to be marked as 

speech in order to set its state to VAD_ON, specified by 

MIN_VAD_ON_COUNT, and a number of consecutive frames to be marked 

as non-speech in order to set its state to VAD_OFF, specified by 

MIN_VAD_OFF_COUNT.  

Because the classifier can make mistakes at the beginning and the 

end, the logic also includes a lead-in and a trail-out time. After the minimum 

number of consecutive speech frames has been observed VAD does not 

indicate VAD_ON for the first of those frames, but rather several frames 

earlier, a number specified by LEAD_COUNT. Similarly, when the minimum 

number of non-speech frames has been observed, VAD waits an additional 

number of frames before changing to VAD_OFF, specified by 

TRAIL_COUNT. 
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3.3 Back End of WUW-SR 

Front-end of WUW-SR is responsible for generating three sets of 

features MFCC, LPC, and ENH-MFCC. These features are needed to be 

decoded with corresponding Hidden Markov Models (HMMs) in the back-

end stage of the WUW-SR (e.g., server). The Back-end is responsible for 

classifying observation sequences as In Vocabulary (INV), i.e. the sequence is 

a Wake-Up-Word, and Out Of Vocabulary (OOV), i.e. the sequence is not a 

Wake-Up-Word.  

The WUW-SR system uses a combination of Hidden Markov Models 

and Support Vector Machines for acoustic modeling, and as a result the back-

end consists of an HMM recognizer and a SVM classifier. Prior to 

recognition, HMM and SVM models must be created and trained for the 

word or phrase which is to be the Wake-Up-Word. 

When the VAD state changes from VAD_OFF to VAD_ON, the HMM 

recognizer resets and prepares for a new observation sequence. As long as the 

VAD state remains VAD_ON, feature vectors are continuously passed to the 

HMM recognizer, where they are scored using the triple scoring method. If 

using multiple feature streams, recognition is performed for each stream in 

parallel. When VAD state changes from VAD_ON to VAD_OFF, multiple 

scores are obtained from the HMM recognizer and are sent to the SVM 
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classifier. SVM produces a classification score which is compared against a 

threshold to make the final classification decision of INV or OOV. 
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4 Front End System Design 

Automatic speech recognition systems are usually implemented on 

personal computers equipped with high-performance microprocessors. This 

is because of the computation complexity of applied algorithms, as well as 

their high confidential levels of security. General purpose processors contain 

floating-point units able to carry out millions of operations per second at 

frequencies in the GHz range, which allows for a resolution of the complex 

algorithms in just a few hundred of milliseconds. However, in the low-cost 

consumer market, such factors as price, power consumption and size 

determine the viability of a product.  

Since the main drawback of microprocessors based systems are the 

cost, and the necessary space required to incorporate their external 

associated peripherals, the use of an FPGA (Field Programmable Gate Arrays) 

is a better suited way to implement systems that require a high 

computational capability at an affordable price. Additionally, the FPGA 

allows dividing and implementing algorithm as parallel parts, which allows 

running computation at lower operational circuit frequency and requires less 

power consumption. FPGA circuits can be programmed by the user and 

adapted to perform the particular task. The term "programming," in case of 
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FPGA architecture, means changing its internal structure. The programming 

can also be repeated multiple times. The mechanism that allows for FPGA 

programming, on the one hand, decreases the operating speed of the FPGA 

chip comparing to ASIC. On the other hand, it provides the opportunity to 

tune-up the system to the specific parameters of the implemented algorithm 

(Staworko, M.; Rawski, M) [52]. 

4.1 Features Extraction 

The WUW-SR problem can be roughly divided into two issues: speech 

analysis (feature extraction) and classification. Feature extraction methods 

are responsible for reducing the resources required to describe speech 

samples accurately. In case of speech analysis, various digital signal 

processing (DSP) algorithms are used to detect desired features of input 

speech signal. The most common algorithms are LPCC, MFCC, LFCC and 

others. MFCC is recognized as the best known and most popular. However, 

the LFCC algorithm is often used in speaker identification applications, since 

it produces results of comparable quality (D. A. Reynolds) [53], 

(A.Kaczmarek, M.Staworko) [54], (Charbuillet, C., Gas, B., Chetouani, M., 

Zarader J.L) [55]. In our work, we aim to design and implement a novel 

WUW’s front-end processor on FPGA to generate three different sets of 
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features: 

 Mel-frequency Cepstral Coefficients (MFCC) 

 Linear predictive Coding Coefficients (LPC) 

 Enhanced Mel-frequency Cepstral Coefficients (ENH-MFCC) 

4.1.1 Mel-scale Frequency Cepstral Coefficients (MFCC) 

The feature extraction involves identifying the formants in the speech, 

which represent the frequency locations of energy concentrations in the 

speaker’s vocal tract. There are many different approaches used: Mel-scale 

Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC), 

Linear Prediction Cepstral Coefficients (LPCC), Reflection Coefficients (RCs). 

Among these, MFCC has been found to be more robust in the presence of 

background noise compared to other algorithms (S. Davis and P. 

Mermelstein) [56]. Also, it offers the best trade-offs between performance 

and size (memory) requirements. The primary reason for effectiveness of 

MFCC is that, it models the non-linear auditory response of the human ear 

which resolves frequencies on a log scale (H. Combrinck and E. Botha) [57]. 

4.1.2 Autocorrelation Linear Predictive Coding (LPC) 

The basic idea of LPC is to approximate the current speech sample as 

a linear combination of past samples as shown in the following equation: 
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      : Previous speech samples 

 :  Order of the model 

   :  Prediction coefficient 

    :  Prediction error 

This module gets windowed data from the window module for 

representing the spectral envelope of a digital signal of speech in compressed 

form, using the information of a linear predictive model. We use this method 

to encode good quality speech and provide an estimate of speech parameters. 

The goal of this method is to calculate prediction coefficients    for each 

frame. The order of LPC, which is the number of coefficients  , determines 

how closely the prediction coefficients can approximate the original 

spectrum. As the order increases, the accuracy of LPC also increases. This 

means the distortion will decrease. The main advantage of LPC is usually 

attributed to the all-pole characteristics of vowel spectra. Also, the ear is also 

more sensitive to spectral poles than zeros (M. R. Schroeder) [58].  

In comparison to non-parametric spectral modeling techniques such 

as filter banks, LPC is more powerful in compressing the spectral information 

into few filter coefficients (K. K. Paliwal and W. B. Kleijn) [59]. 
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4.1.3 Enhanced Mel-scale Frequency Cepstral Coefficients (ENH-MFCC) 

The spectrum enhancement module is designed to generate ENH-

MFCC features. We have implemented this module to perform an 

enhancement algorithm on the LPC spectrum signal. The ENH-MFCC 

features have a higher dynamic range than regular MFCC features, so these 

new features will help the back-end in improving the recognition quality and 

accuracy (V. Z. Këpuska and T. B. Klein) [1]. 

4.2 System Architecture 

Front-end part of the novel Wake-Up-Word speech recognition 

system is designed and implemented on FPGA as efficient implementation of 

a complete system on a programmable chip (SOPC). Our design will get an 

impetus with the advent of high-density FPGAs integrated with high-capacity 

RAMs and the availability of implementation support for soft-core 

processors, such as the Nios II processor.  

FPGAs enable the best of both worlds to be used gainfully for an 

application: the microcontroller and RISC processor is efficient for 

performing control and decision-making operations, while the FPGA 

efficiently performs digital signal processing (DSP) operations and other 

computation intensive tasks as will be explained later in this dissertation. 
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We produced efficient hardware front-end system with an FPGA 

acting as processor that is capable of generating three different sets of 

features (MFCC, LPCC, and ENH-MFCC) at much faster rate than software. 

Implementation of systems using an Altera-based system on a programmable 

chip enables time-critical functions to be implemented in hardware 

synthesized with Verilog HDL code. 

 As shown in the diagram below, front-end takes audio signal and 

processes it as a quantized digitized waveform through a sequence of very 

complex DSP modules to generate a sequence of 39-dimensions 

 12-dimensions MFCC plus 1-dimension power 

 12-dimensions LPCC plus 1-dimension power 

 12-dimensions ENH-MFCC plus 1-dimension power 

as the base feature for each frame, that can be used in the back-end 

model, each vector representing the information in a small time 

window of the signal. This feature is then extended to 39-dimensions 

for every feature type by augmenting first-order and second-order 

time derivatives, in order to capture the transition of the spectrum. 
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Figure 4.1 – Front-end of WUW-SR Block Diagram 

4.3 Front End with Built-in VAD Architecture  

The following diagram illustrates the architecture of the Front-end 

with Voice Activity Detector. Five blue-colored modules represent the Voice 

Activity Detector stage.  The VAD is responsible for finding utterances 
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spoken in the correct context and segmenting them from the rest of the 

audio stream, then the system will identify whether or not the segmented 

utterance is a WUW. As shown in the diagram below, the design is divided 

into twenty seven-modules (five-stages). 

 

Figure 4.2 – Front-end of WUW-SR with VAD Block Diagram 
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Pre-Processing stage: 

The first seven yellow-colored modules represent the pre-processing 

stage and are used as the basic modules to provide windowed speech signal 

to the other stages. 

1. Analog to Digital Converter ADC 

2. DC Filtering  

3. Serial to 32-bit parallel converter 

4. Integer to floating-point converter 

5. Pre-emphasis filtering  

6. Window advance buffering 

7. Hamming window 

Linear Predictive Coding Coefficients stage: 

Five brown-colored modules represent the Linear Predictive Coding 

Coefficients (LPC) stage and are used to generate 13-Linear Predictive Coding 

features.  

1. Autocorrelation Linear Predictive Coding 

2. Fast Fourier Transform FFT 

3. LPC Spectrogram 

4. Mel-scale Filtering 

5. Discrete Cosine Transform DCT 
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Mel-Frequency Cepstral Coefficients stage: 

Four pink-colored modules represent the MFCC stage and are used to 

generate 13 MFCCs features.  

1. Fast Fourier Transform FFT 

2. MFCC Spectrogram  

3. Mel-scale Filtering  

4. Discrete Cosine Transform DCT 

Enhanced Mel-Frequency Cepstral Coefficients stage: 

Four green-colored modules represent the ENH-MFCC stage and are 

used to generate 13 ENH-MFCC features.  

1. Enhanced Spectrum (ENH) 

2. Enhanced MFCC Spectrogram 

3. Mel-scale Filtering 

4. Discrete Cosine Transform DCT 

Voice Activity Detector stage:  

Four red-colored modules represent the Voice Activity Detector 

(VAD) stage.  The VAD is responsible for finding utterances spoken in the 

correct context and segmenting them from the rest of the audio stream, then 

the system will identify whether or not the segmented utterance is a WUW. 

1. Spectrogram features  
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2. Energy features 

3. MFCC features  

4. Voice activity detection logic VAD  

4.4 Design Function Description 

The goal of front-end signal processing is to extract relevant feature 

parameters of speech, which are more suitable for the purpose of speech 

recognition than the input speech waveform itself in terms of information 

rate and redundancy reduction. Intensive efforts have been carried out to 

achieve a high performance front-end. Converting a speech waveform into a 

form suitable for processing by the decoder requires several stages as follows: 

1. Filtration: The waveform is sent through a low pass filter, typically 4 

kHz to 8 kHz. As is evidenced by the bandwidth of the telephone 

system being around 4 kHz; this is sufficient for comprehension and 

used a minimum bandwidth required for telephony transmittal. 

2. Analog-to-Digital Conversion: The process of digitizing and 

quantizing an analog speech waveform begin with this stage. Recall 

that the first step in processing speech is to convert the analog 

representations (first air pressure, and then analog electric signals 

from a microphone), into a digital signal. 
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3. Sampling Rate: The resulting waveform is sampled. Sampling rate 

theory requires a sampling (Nyquist) rate of double the maximum 

frequency (so 8 to 16 kHz as appropriate). The sampling rate of 8 kHz 

was used in our front-end. (We used CODEC Chip to perform first, 

second, and third stages). 

4. Serial to Parallel Converter: This model gets serial digital signal 

from CODEC and converts it to 32-bit. 

5. Integer to floating-point converter: This module converts 32-bit, 

signed integer data to single-precision (32-bit) floating-point values. 

The input data is routed through the int_2_float Megafunction core 

named ALTFP_CONVERT. 

6. Pre-emphasis: The digitalized speech signal s(n) is put through a 

low-order LPF to spectrally flatten the signal and to make it less 

susceptible to finite precision effects later in the signal processing. 

The filter is represented by:  

y[n] = x[n] – αx [n-1], 

Output = Input – (PRE_EMPH_FACTOR * Previous_input). 

The value of PRE_EMPH_FACTOR (α) where chosen as 0.975. 

7. Window Buffering: A 32-bit, 256 deep dual-port RAM (DPRAM) 

stores 256 input samples. A state machine handles moving audio data 
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into the RAM, and pulling data out of the RAM (40 samples) to be 

multiplied by the Hamming coefficients, which are stored in a ROM 

memory. 

8. Windowing: The hamming window function smoothes the input 

audio data with a Hamming curve prior to the FFT function. This 

stage slices the input signal into discrete time segments. This is done 

by using window N milliseconds, typically 25 ms wide (200 samples). 

A Hamming window size of 25 ms which consists of 200 samples at 8 

KHz sampling frequency and 5 ms frame shift (40 samples) is picked 

for our front-end windowing. 

9. Fast Fourier Transform: In order to map the sound data from the 

time domain to the frequency domain, the Altera IP Megafunction 

FFT module is used. The module is configured so as to produce a 256-

point FFT. This function is capable of taking a streaming data input in 

natural order, and it can also output the transformed data in natural 

order, with maximum latency of 256 clock cycles once all the data (256 

data samples) has been received. 

10. Spectrogram: This module takes the complex data generated by the 

FFT and performs the function:   

20 * log10 (fft_real2 + fft_imag2) 
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We designed spectrogram to show how the spectral density of a signal 

varies with time. We used spectrogram module to identify phonetic 

sounds. Digitally sampled data, in the time domain, are broken up 

into chunks, which usually overlap, and Fourier transformed  to 

calculate the magnitude of the frequency spectrum for each chunk. 

Each chunk then corresponds to a vertical line in the image; a 

measurement of magnitude versus frequency  for a specific moment 

in time. The spectrums or time plots are then "laid side by side" to 

form the image surface. 

11. Mel-scale Filtering: While the resulting spectrum of the FFT 

contains information in each frequency in linear scale, human hearing 

is less sensitive at frequencies above 1000 Hz. This concept also has a 

direct effect on performance of ASR systems; therefore, the spectrum 

is warped using a logarithmic Mel scale. In order to create this effect 

on the FFT spectrum, a bank of filters is constructed with filters 

distributed equally below 1000 Hz and spaced logarithmically above 

1000 Hz. 

12. Discrete Cosine Transform: DCT is a Fourier-related transform 

similar to the discrete Fourier transform (DFT), but using only real 

numbers. DCTs are equivalent to DFTs of roughly twice the length, 



64 

 

operating on real data with even symmetry (since the Fourier 

transform of a real and even function is real and even). A DCT 

computes a sequence of data points in terms of summation of cosine 

functions oscillating at various frequencies. The idea of performing 

DCT on Mel Scale is motivated by extraction of the speech frequency 

domain characteristics. DCT module reduces the speech signal’s 

redundant information, and reaches the aim of regulating the speech 

signal into feature coefficients with minimal dimensions. 

13. Enhanced Spectrum: This module gets the spectrogram from LPC 

and statistical information from the VAD and generates a new 

enhanced and smoothed Mel-frequency Cepstral Coefficients (ENH-

MFCC). 

14. Feature Representation:  Speech recognition is a computationally 

demanding task. Particularly the stage of feature extraction, which is 

responsible for reducing the resources required to describe speech 

samples accurately and requires algorithms of large complexity. 

Normally, speech signal is converted into a parameterized sequence of 

feature vectors by front-end processing to emphasize the 

characteristics of spoken words and suppress other irrelevant 

information. Typical features used in continuous speech recognition 
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include Linear predictive Coding Coefficients (LPCC), Mel-frequency 

Cepstral Coefficients (MFCC) and Perceptual Linear Predictive 

Coefficients (PLP). Some of them are motivated by the nature of 

human hearing. For the experiments described in this dissertation, the 

outputs of our front-end are sequences of vectors composed of 

features: 

 Mel-frequency Cepstral Coefficients (MFCC) 

 Linear Predictive Coding Coefficients (LPC) 

 Enhanced Mel-frequency Cepstral Coefficients (ENH-MFCC) 
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5 Front End Hardware Implementation 

5.1 System Design Environment 

5.1.1 Hardware Design Tools 

The FPGA development boards used in our design are ALTERA DE2 

Development Board with (Cyclone II FPGA) and DSP Development Kit with 

(Cyclone III FPGA). The earlier designs are implemented on the ALTERA 

DE2 Development Board and as the design gets larger and more complex we 

used (DSP Development Kit with Cyclone III FPGA). In both cases the 

designs are written in Verilog HDL. 

The Cyclone® III DSP development board provides a hardware 

platform for developing and prototyping low-power, high-volume, and 

feature-rich designs and to demonstrate the Cyclone III device’s on-chip 

memory, embedded multipliers, and the Nios® II embedded processor. 

With up to 4 M bits of embedded memory and 288 embedded 18-bit × 

18-bit multipliers, the Cyclone III device supplies internal memory while also 

provides external support for high-speed, low-latency memory access via 

dual-channel DDR SDRAM and low-power SRAM.  

Cyclone III devices are designed to provide low static and dynamic 

power consumption. Additionally, with the support of the Quartus® II 
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software’s PowerPlay technology, designs are automatically optimized for 

power consumption. Therefore, the Cyclone III development board provides 

a power-optimized, integrated solution for memory-intensive, high-volume 

applications. The Cyclone III Development Kit features the EP3C120F780 

device (U20) in a 780-pin BGA package. The board contains two HSMC 

(High-Speed Mezzanine Cards) interfaces called Port A and Port B. These 

HSMC interfaces support both single-ended and differential signaling. The 

HSMC interface also allows for JTAG, SMBus, clock outputs and inputs, as 

well as power for compatible HSMC cards. The HSMC is an Altera-developed 

specification, which allows users to expand the functionality of the 

development board through the addition of daughter cards (HSMC cards), 

(Altera, Inc) [17]. 

Cyclone® III device family offers a unique combination of high 

functionality, low power and low cost. Based on Taiwan Semiconductor 

Manufacturing Company (TSMC) low-power (LP) process technology, silicon 

optimizations and software features to minimize power consumption, 

Cyclone III device family provides the ideal solution for high-volume, low-

power, and cost-sensitive applications. To address the unique design needs, 

Cyclone III device family offers the following two variants: 
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 Cyclone III—lowest power, high functionality with the lowest cost 

 Cyclone III LS—lowest power FPGAs with security 

With densities ranging from about 5,000 to 200,000 logic elements 

(119,088 LEs) and 0.5 Megabits to 8 Mb of memory (3,981,312 Byte) for less 

than ¼ watt of static power consumption, Cyclone III device family makes it 

easier for you to meet your power budget. Cyclone III LS devices are the first 

to implement a suite of security features at the silicon, software, and 

intellectual property (IP) level on a low-power and high-functionality FPGA 

platform. This suite of security features protects the IP from tampering, 

reverse engineering and cloning. In addition, Cyclone III LS devices support 

design separation which enables you to introduce redundancy in a single 

chip to reduce size, weight, and power of your application (Altera, Inc) 

[17].The TLV320AIC23 is a high-performance stereo audio codec with highly 

integrated analog functionality. The analog-to-digital converters (ADCs) and 

digital-to-analog converters (DACs) within the TLV320AIC23 use multi bit 

sigma-delta technology with integrated oversampling digital interpolation 

filters. Data-transfer word lengths of 16, 20, 24, and 32 bits, with sample rates 

from 8 kHz to 96 kHz, are supported. The ADC sigma-delta modulator 

features third-order multibit architecture with up to 90-dBA signal-to-noise 

ratio (SNR) at audio sampling rates up to 96 kHz, enabling high-fidelity 
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audio recording in a compact, power-saving design. The DAC sigma-delta 

modulator features a second-order multibit architecture with up to 100-dBA 

SNR at audio sampling rates up to 96 kHz, enabling high-quality digital 

audio-playback capability, while consuming less than 23 mw during playback 

only (Texas Instruments) [60]. 

5.1.2 Software Design Tools 

5.1.2.1 Quartus II 64-bits 

Quartus II is a software tool produced by Altera for analysis and 

synthesis of HDL designs, which enables the developer to compile their 

designs, perform timing analysis, examine RTL diagrams, simulate a design's 

reaction to different stimuli, and configure the target device with the 

programmer. The Quartus II software is the leading design software for 

performance and productivity. It is the only complete design solution for 

CPLDs, FPGAs, and ASICs in the industry; it is a comprehensive environment 

for system-on-a-programmable-chip (SOPC) design. The Quartus II software 

includes an integrated development environment to accelerate system-level 

design and seamless integration with leading third-party software tools and 

flows (Altera, Design Software) [61]. 
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5.1.2.2 ModelSim Altera 

Mentor Graphics ModelSim® HDL Simulator is a source-level 

verification tool, allowing you to verify HDL code line by line. You can 

perform simulation at all levels: behavioral (pre-synthesis), structural (post-

synthesis), and back-annotated, dynamic simulation. 

Coupled with the most popular HDL debugging capabilities in the 

industry, ModelSim is known for delivering high performance, ease of use, 

and outstanding product support. 

Graphical user interface enables you to quickly identify and debug 

problems, aided by dynamically updated windows. Once a problem is found, 

you can edit, recompile, and re-simulate without leaving the simulator. 

ModelSim fully supports current VHDL and Verilog HDL language 

standards. You can simulate behavioral, RTL, and gate-level code separately 

or simultaneously. ModelSim supports all Altera FPGA libraries, ensuring 

accurate timing simulations (Mentor Graphic, ModelSim Software) [62]. 

5.2 Front End System Architecture 

The Front-end design is broken down into four stages to achieve a 

high performance design: 

 Mel-scale Frequency Cepstral Coefficient (MFCC) 
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 Autocorrelation Linear Predictive Coding (LPC) 

 Enhanced Mel-scale Frequency Cepstral Coefficient (ENH-MFCC) 

 Voice Activity Detector (VAD) 

Converting a speech waveform into three different sets of 

spectrograms and features: 

 Mel-scale Frequency Cepstral Coefficient (MFCC)  

 Autocorrelation Linear Predictive Coding (LPC) 

 Enhanced Mel-scale Frequency Cepstral Coefficient (ENH-MFCC) 

The following diagram illustrates the architecture of the Front-end 

and VAD. Blue colored models represent VAD models. 



72 

 

 

Figure 5.1 – Front-End of WUW-SR Architecture Block Diagram 

5.2.1 MFCC Front End Subsystem Implementation 

As shown in the diagram below, we begin with the process of 

digitizing and quantizing an analog speech waveform. Recall that the first 
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step in processing speech is to convert the analog representations (first air 

pressure, and then analog electric signals in a microphone), into a digital 

signal. This process of analog-to-digital conversion has two steps: 

 Sampling  

 Quantization 

A signal is sampled by measuring its amplitude at a particular time; 

the sampling rate is the number of samples taken per second. In order to 

accurately measure a wave, it is necessary to have at least two samples in 

each cycle: one measuring the positive part of the wave and one measuring 

the negative part. More than two samples per cycle increases the amplitude 

accuracy, but less than two samples will cause the frequency of the wave to 

be completely missed. Thus the maximum frequency wave that can be 

measured is one whose frequency is half the sample rate (since every cycle 

needs two samples). This maximum frequency for a given sampling rate is 

called the Nyquist frequency.    

In any signal processing and digital audio, quantization is the process of 

approximating a continuous range of values (or a very large set of possible discrete 

values) by a relatively small set of discrete symbols or integer values  

(http://en.wikipedia.org/wiki/Quantization_(sound_processing) #Audio_ quantization) 

[63]. 
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Figure 5.2 – MFCC Front-end Subsystem 

The first building block includes two modules (ADC module & DC 

Filtering module). The speech acquisition contains a microphone and a 

CODEC from which digitized speech data are generated. To perform analog 

to digital conversion and DC filtering we designed controller module to 

control the CODEC and acquire the digital data from it, using the 

specification given by the Philips for I2C protocol & DSP operation mode of 

CODEC on the Cyclone® III FPGA [EP3C120F780]. A controller was designed 

using Verilog HDL to perform two operations: I2C protocol operation to 

drive the Audio CODEC [TLV320AIC23], and sound fetching from Audio 

CODEC [TLV320AIC23] to FPGA in DSP mode. 

As shown in the figure below, the (tlv320_codec_spi_ctrl) module has 

been created in the design: the I2C bus controller, virtual sound fetcher, and 

the clock module. The FPGA communicates with the CODEC via the I2C 

(Inter-Integrated Circuit) protocol using two pins: 'SDIN' (the data line), and 
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'SCLK' (the bus clock). I2C bus controller modifies internal settings of 

CODEC, de-mute the microphone input, boost the microphone volume, and 

change the default sound path (giving the microphone priority over other 

inputs). After the CODEC digitalizes the input it puts the digital data on a 

digital audio interface, to fetch the data on SDATA_IN of codec from digital 

audio interface. DSP operation mode is used in the design. SDATA_IN is the 

formatted digital audio data stream with left and right channels multiplexed 

together. LRCOUT (alignment clock) and BCLK (synchronization clock) is 

used to fetch the data on SDATA_IN. This data can be used for any sound 

application. The clock module is designed to generate different clock 

requirements for the controller. CODEC internal registers sittings: 

 Generate reset, delay after command. 

 Sample Rate Control: USB Mode, SR = 8 KHz, no clock dividers. 

 Digital Audio Interface Format: Master DSP format, 32-bit word 

length. 

 Analog Audio Path Control: Side stone disabled, DAC enabled, 

Bypass disabled, INSEL = line-in, MIC muted, no Mic boost. 

 Analog Audio Path Control: Sidestone disabled, DAC enabled, 

Bypass disabled, INSEL = MIC, MIC not muted, no Mic boost. 
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 Power Down Control: Turn on everything. 

 Digital Audio Path Control: Disable DAC soft mute, enable ADC 

HPF (DC Filtering). 

 Digital Interface Activation: Activate digital audio interface. 

 Left Line In Volume Control: LRS=1, Mute off, volume = 0dB. 

 Right Line In Volume Control: LRS=1, Mute off, volume = 0dB. 

5.2.1.1 CODEC Audio Data Interface 

This is the interface to the audio CODEC which receives Analog-to-

Digital Converter (ADC) data from the CODEC and sends Digital-to-Analog 

Converter (DAC) data to the CODEC.  The interface operates in DSP mode 

only and assumes that the CODEC is the transfer master (the CODEC 

generates the BCLK and L/R clocks.)  In DSP mode, the CODEC generates a 

single clock pulse on the LRCLK_in signal and data is shifted in/out on the 

subsequent clocks. The CODEC shifts ADC data out on the falling edge of 

BCLK (CODEC_BCLK_in) as MSB first, so the ADC data 

(CODEC_SDATA_in) is registered on the rising edge of BCLK in the interface 

logic.  Likewise, the CODEC registers DAC data (CODEC_SDATA_out) on 

the rising edge of BCLK, so the interface logic shifts DAC data out on the 

falling edge. 
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The interface is designed to send/receive 16, 20, 24 or 32-bit wide data 

to/from the CODEC.  The 2-bit input (WORDLENGTH_SEL_in) determines 

the number of bits to shift per channel: 00 = 16-bit, 01 = 20-bit, 10 = 24-bit, 11 

= 32-bit.  The output ADC_DATA_out contains the parallel left and right data 

from the CODEC.  Depending on the selected word length the output data is 

formatted as: 

Word length  Left Channel Data  Right Channel Data 

16              ADC_DATA_out[31:16]        ADC_DATA_out[15:0] 

20              ADC_DATA_out[39:20]        ADC_DATA_out[19:0] 

24              ADC_DATA_out[47:24]      ADC_DATA_out[23:0] 

32              ADC_DATA_out[63:32] ADC_DATA_out[31:0] 

A single BCLK data valid pulse (ADC_DV_out) is generated when all 

bits are registered. The DAC data interface is designed to read data out of a 

FIFO, so the signal DAC_FIFO_RDEN_out generates a single BCLK read-

enable pulse (if DAC_FIFO_EMPTY_in is not active) at the end of each 

transfer to retrieve the next DAC words.  Since the DAC data is sent MSB 

first, the input data must be formatted accordingly for the selected word 

length: 
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Word length  Left Channel Data  Right Channel Data 

16   DAC_DATA_in[63:48] DAC_DATA_in[47:32] 

 20   DAC_DATA_in[63:44]         DAC_DATA_in[43:24] 

24   DAC_DATA_in[63:40] DAC_DATA_in[39:16] 

32   DAC_DATA_in[63:32] DAC_DATA_in[31:0] 

5.2.1.2 Serial-to-Parallel & Integer-to-Floating Point Converter 

We used floating-point converter (ALTFP_CONVERT) Megafunction 

core to design this module. This operation converts integer bits to the IEEE-

754 floating-point representation. Conversions of signed integers to floating-

point numbers in single precision are used in this module. All floating-point 

formats are implemented as shown in the figure below. 

 

Figure 5.3 – IEEE-754 Single-precision Floating-point Representation 

 S: Represents a sign bit 

 E: Represents an exponent field 

 M: Represents the mantissa (part of a logarithm or fraction) field 

For a single-precision floating-point number, the most significant bit 

(MSB) is a sign bit, followed by eight intermediate bits to represent an 

exponent and 23 least significant bits (LSBs) to represent the mantissa. As a 
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result, the total width for a single-precision floating-point number is 32 bits. 

The bias for the representation is 127. The advantage of using floating-point 

numbers is that they can represent a much larger range of values. In a fixed-

point number representation, the radix point is always at the same location. 

Although the fixed radix point simplifies numeric operations and conserves 

memory, it limits the magnitude and precision of the number representation. 

In situations that require a large range of numbers or high resolution, a 

reloadable radix point is desirable. In the floating-point format, very large or 

very small numbers can be represented. 

5.2.1.3 Pre-emphasis Filter 

Prior to the core feature-extraction component, there is one more 

stage of pre-processing that is necessary to be carried out. This pre-emphasis 

phase is basically a high-pass filter that increases the relative energy of the 

high frequency spectrum. The characteristics of the vocal tract define the 

properties of speech. Although possessing relevant information, how 

frequency formants contain high concentrations of energy relative to high 

frequency formants. As shown in the figure below, the digitized speech signal 

goes through a pre-emphasis process, which performs spectral flattening 

with a first-order FIR filter described by: 
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y[n] = x[n] – αx [n-1] 

Output = Input – (PRE_EMPH_FACTOR * Previous input) 

Where n is the sample index and α = 0.975 the filter coefficient used. 

 

Figure 5.4 – Pre-emphasis Function 

 

This module is used to amplify energy in the high-frequencies of the 

input speech signal. This allows information in these regions to be more 

recognizable during HMMs training and recognition. 

5.2.1.4 Hamming Window & Advance Buffering 

For advance buffering we used A 32-bit, 256 deep dual-ports RAM 

(DPRAM) to store 256 input samples. A state machine handles moving audio 

data into the RAM, and pulling data out of the RAM (40 samples) to be 

multiplied by the Hamming coefficients, which are stored in a ROM memory. 
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The Hamming window function smoothes the input audio data with a 

Hamming curve prior to the FFT function. This stage slices the input signal 

into discrete time segments. This is done by using window typically 25 ms 

wide (200 samples). A Hamming window size of 25 ms which consists of 200 

samples at 8 KHz sampling frequency and 5 ms frame shift (40 samples) is 

picked for our front-end windowing. The diagram and equation below show 

hamming window function.  

 

 

Figure 5.5 - Hamming Window 

A 32-bit, 256 deep dual-port RAM (DPRAM) stores 200 input samples.  

A state machine handles moving audio data into the RAM, and pulling data 

out of the RAM to be multiplied by the Hamming coefficients, which are 

stored in a ROM memory.  The ROM initialization file was created using a 
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MATLAB script, which uses the MATLAB function "hamming" to generate 

the 200 data points and convert them to hexadecimal, 32-bit, single precision 

floating-point values. The script writes the initialization file for the 

Megafunction IP and also a file used for the test bench. 

The state machine first stores 40 incoming audio samples in the RAM 

and decrementing to a specific location (this mimics a FIFO).  Once the 40 

samples have been stored, the state machine pulls data out of the RAM 

(oldest sample first).  This data is multiplied by the corresponding Hamming 

coefficient from the ROM.  The result of the multiplication is stored in a 

FIFO for use by the FFT.  The state machine accounts for the latency of the 

multiplication core.  Simultaneously, the data in the RAM is shifted up in the 

memory by 40 locations (the upper 40 words are discarded), leaving the 

bottom 40 words open for the next set of audio samples. 

To summarize, each FFT calculation is a weighted average of present 

and past audio samples. The figure below shows speech signal before and 

after applying hamming window. 
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Figure 5.6 - Speech Signal before and after applying Hamming Window 

5.2.1.5 Fast Fourier Transform 

In order to map the sound data from the time domain to the 

frequency domain, the Altera IP Megafunction FFT module is used. The 

module is configured so as to produce a 256-point FFT. This function is 

capable of taking a streaming data input in natural order, and it can also 

output the transformed data in natural order, with maximum latency of 256 

clock cycles once all the data (256 data samples) has been received. 

The FFT interface module instantiates a single-precision FFT of length 

256.  The architecture of the FFT is variable-streaming, natural-order in and 

out and supports an inverse FFT function as well.  A state machine reads data 
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out of the hamming window FIFO when it is full and streams this data into 

the FFT.  The streaming output of the FFT writes the complex data (real & 

imaginary) into separate 256 x 32-bit FIFOs for extraction by the spectrogram 

function. 

As shown in the figure below, FFT used to transform the speech signal 

into frequency domain, where the most important speech/speaker 

information resides. The windowed time domain samples are converted into 

frequency domain by discrete fourier transform. The frequency-domain 

samples generally have complex values. Only the real magnitudes were used 

in our design. 

 

Figure 5.7 - Windowed Speech to Fourier Transform 

5.2.1.6 MFCC Spectrogram  

A spectrogram is a time-varying spectral representation (forming an 

image) that shows how the spectral density of a signal varies with time. Also 
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known as spectral waterfalls, sonograms, voiceprints (or voicegrams), and 

spectrograms are used to identify phonetic sounds, to analyze the cries of 

animals; they were also used in many other fields including music, 

sonar/radar, speech processing, seismology, etc. The instrument that 

generates a spectrogram is called a spectrograph.  This module takes the 

complex data generated by the FFT and performs the function below: 

20 * log10 (fft_real² + fft_imag²) 

We designed spectrogram to show how the spectral density of a signal 

varies with time. We used spectrogram module to identify phonetic sounds. 

Digitally sampled data, in the time domain, are broken up into chunks, 

which usually overlap, and Fourier transformed to calculate the magnitude of 

the frequency spectrum for each chunk. Each chunk then corresponds to a 

vertical line in the image; a measurement of magnitude versus frequency for 

a specific moment in time. The spectrums or time plots are then "laid side by 

side" to form the image surface. 

The figures below shows waveform (speech signal) for words 

“Onward” and “Voyager” with 8 KHz sampling rate and its MFCC 

spectrograms representation generated by the Front End module. 

This module reads the real and imaginary FFT data from the FIFOs 

whenever data is available.  The real data is multiplied by itself through a 
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floating-point multiply Megafunction core and the imaginary data is 

multiplied by itself through another core.  The results of these multiplies are 

routed to the inputs of the floating-point adder.  The result of the adder is 

then routed to the input of the floating-point log Megafunction. Altera's log 

Megafunction actually calculates the natural log of the input.  

To scale the final result to log10, the output of the log function is 

multiplied by 20 / ln (10) - this is a constant value of 0x410AF967 (8.685889). 

A counter is used to compensate for the latency of the Megafunctions 

(generate the FFT FIFO read-enables and the spectrogram output write-

enable). 

 

Figure 5.8 - MFCC Hardware Front-end Spectrogram for the word “Onward” 

 

 

Figure 5.9 - MFCC Hardware Front-end Spectrogram for the word “Voyager” 
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5.2.1.7 Mel-scale Filtering 

While the resulting spectrum of the FFT contains information in each 

frequency in linear scale, human hearing is less sensitive at frequencies above 

1000 Hz. This concept also has a direct effect on performance of ASR systems; 

therefore, the spectrum is warped using a logarithmic Mel-scale as shown in 

the figure. . In order to create this effect on the FFT spectrum, a bank of 

filters is constructed with filters distributed equally below 1000 Hz and 

spaced logarithmically above 1000 Hz. Mel-scale filter was computed using 

the function below: 

mel (f) = 1127 ln (1+f / 700) 

 

Figure 5.10 - Mel-scale Function 

The figure below shows Mel-scale filter bank using triangular filters. 

The output of filtering the FFT signal by each Mel-scale filter is known as the 

Mel-spectrum. 
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Figure 5.11 - Mel-scale Bank Filter 

5.2.1.8 Discrete Cosine Transform 

DCT is a Fourier-related transform similar to the discrete Fourier 

transform (DFT), but using only real numbers. DCTs are equivalent to DFTs 

of roughly twice the length, operating on real data with even symmetry 

(since the Fourier transform of a real and even function is real and even).  

A DCT computes a sequence of data points in terms of summation of 

cosine functions oscillating at various frequencies. The idea of performing 

DCT on Mel-scale is motivated by extraction of the speech frequency domain 

characteristics. DCT module reduces the speech signal’s redundant 
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information, and reaches the aim of regulating the speech signal into feature 

coefficients with minimal dimensions. 

The DCT of the Mel-scale is computed, resulting in the spectrum. This 

representation is valuable because it separates characteristics of the source 

and vocal tract from the speech waveform. 

5.2.1.9 MFCC Features 

The stage of feature extraction is responsible for reducing the 

resources required to describe speech samples accurately and requires 

algorithms of large complexity. Normally, speech signal is converted into a 

parameterized sequence of feature vectors by front-end processing to 

emphasize the characteristics of spoken words and suppress other irrelevant 

information.The front-end takes audio signal and processes it as a quantized 

digitized waveform through a sequence of very complex DSP modules to 

generate a sequence of 39-dimensions 

 12-dimensions MFCC plus 1-dimension power 

 12-dimensions LPC plus 1-dimension power 

 12-dimensions ENH-MFCC plus 1-dimension power 

as the base feature for each frame, that can be used in the back-end model, 

each vector representing the information in a small time window of the 
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signal. This feature is then extended to 39-dimensions for every feature type 

by augmenting first-order and second-order time derivatives, in order to 

capture the transition of the spectrum.  

The figures below show waveform (speech signal) for the word 

“Voyager” with 8 KHz sampling rate and its MFCC features generated by the 

Front-end module. 

 

Figure 5.12 - MFCC Hardware Front-end Features (12-Coefficients) 

 

 

Figure 5.13 - MFCC Hardware Front-end Features (11-Coefficients) 

5.2.2 LPC Front End Subsystem Implementation 

As shown in the diagram below, an additional module named 

Autocorrelation Linear Productive Coding (LPC) used to extract the speech 
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as LPC features. The basic idea of LPC is to approximate the current speech 

sample as a linear combination of past samples as shown in the following 

equation: 

                    

 

   

 

Where                   x[n-k]: Previous speech samples 

      p:   Order of the model 

   ak:   Prediction coefficient 

   e[n]:   Prediction error 

 

 

Figure 5.14 – LPC Front-end Subsystem 

LPC module gets windowed data from the window module for 

representing the spectral envelope of a digital signal of speech in compressed 
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form, using the information of a linear predictive model. We use this method 

to encode good quality speech and provide an estimate of speech parameters. 

The goal of this method is to calculate prediction coefficients    for 

each frame. The order of LPC, which is the number of coefficients   , 

determines how closely the prediction coefficients can approximate the 

original spectrum. As the order increases, the accuracy of LPC also increases. 

This means the distortion will decrease. The main advantage of LPC is 

usually attributed to the all-pole characteristics of vowel spectra. Also, the 

ear is also more sensitive to spectral poles than zeros (M. R. Schroeder) [64]. 

In comparison to non-parametric spectral modeling techniques such as filter 

banks, LPC is more powerful in compressing the spectral information into 

few filter coefficients (K. K. Paliwal and W. B. Kleijn) [65]. 

5.2.2.1 LPC Spectrogram 

The figures below shows waveform (speech signal) for the words 

“Onward” and “Voyager” with 8 KHz sampling rate and its LPC spectrogram 

representation generated by the Front End module. 

We used the same MFCC spectrogram function to generate LPC 

spectrogram: 

20 * log10 (fft_real² + fft_imag²) 
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Figure 5.15 - LPC Hardware Front-end Spectrogram for the word “Onward” 

 

 

Figure 5.16 - LPC Hardware Front-end Spectrogram for the word “Voyager” 

This module reads the real and imaginary FFT data from the FIFOs 

whenever data is available.  The real data is multiplied by itself through a 

floating-point multiply Megafunction core and the imaginary data is 

multiplied by itself through another core.  The results of these multiplies are 

routed to the inputs of the floating-point adder.  The result of the adder is 

then routed to the input of the floating-point log Megafunction. Altera's log 

Megafunction actually calculates the natural log of the input. 
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5.2.2.2 LPC Features 

The figures below show waveform (speech signal) with 8 KHz 

sampling rate and its 12-Coefficients (Figure 5.17) & 11-Coefficients (Figure 

5.18) LPC features generated by the Front-end module. 

 

Figure 5.17 - LPC Hardware Front-end Features (12-Coefficients) 

 

 

 Figure 5.18 - LPC Hardware Front-end Features (11-Coefficients) 

5.2.3 ENH-MFCC Front End Subsystem Implementation 

The spectrum enhancement module is used to generate enhanced 

Mel-scale Frequency Cepstral Coefficients (ENH-MFCC) set of features. We 

implemented this module as shown in the diagram below to perform the 

enhancement algorithm on the LPC spectrum signal. 
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The ENH-MFCC features have a higher dynamic range than regular 

MFCC features, so these new generated features will help the back-end in 

improving the recognition quality and accuracy. 

The equations below show the enhanced Mel-scale Frequency 

Cepstral Coefficients (ENH-MFCC) algorithm. The algorithm uses only the 

single-sided spectrum, so the state machine starts the calculations when 128 

data points have been written into the input RAM. 

xi = ci yi + bi        e(xi) = e(yi) 

Where: 

  xi = corrupted signal 

  yi = pure signal 

  ci = noise 

  bi = background noise 

  

Enhanced Spectrum = Input LPC Spectrum / Global Information 

(Average) + Local Information (Average) + Estimated Background. 
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Figure 5.19 – ENH-MFCC Front-end Subsystem 

5.2.3.1 ENH-MFCC Spectrogram 

The figures below show waveforms (speech signals) for the words 

“Onward” and “Voyager” with 8 KHz sampling rate and its LPC spectrogram 

representation generated by the Front End module. 

We used the same MFCC spectrogram function to generate LPC 

spectrogram: 

20 * log10 (fft_real² + fft_imag²) 
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Figure 5.20 - ENH-MFCC Hardware Front-end Spectrogram for the word “Onward” 

 

 

Figure 5.21 - ENH-MFCC Hardware Front-end Spectrogram for the word “Voyager” 

5.2.3.2 ENH-MFCC Features 

The figures below show waveform (speech signal) with 8 KHz 

sampling rate and its 12-Coefficients (Figure 5.21) & 11-Coefficients (Figure 

5.22) LPC features generated by the Front End module. 

 

Figure 5.22 - ENH-MFCC Hardware Front-end Features (12-Coefficients) 
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Figure 5.23 - ENH-MFCC Hardware Front-end Features (11-Coefficients) 

5.2.4 Voice Activity Detector Implementation 

There are various kinds of voice that may contain actual speech or 

background noise. In our Front-end of WUW Speech Recognition System it 

is imperative to monitor and detect any speech signal for efficient usage by 

the Back-end stage.  To achieve speech / non-speech detection, as shown in 

fig (5.24) we designed and implemented Voice Activity Detector (VAD) 

models. The VAD continuously monitors system and calculates for every 

frame if the signal is a speech signal or a background noise. VAD used three 

inputs (Log Energy, LPC Features, and MFCC Features) to decide whether to 

turn VAD ON or VAD OFF. Those features are finely tuned to detect any 

voice in the speech frame. Each feature has an independent detection 

method. Depending on the calculations done by the features, the overall 

VAD logic reacts by turning the VAD output on/off (Speech or Noise 

Background). Each feature calculates the presence of speech by calculating 

Variance and Mean deviation. Each feature has its own flag to be set. Each 
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feature is finely tuned to meet certain criteria before its feature flag is set. 

Once all these flags are true, the overall logic of VAD triggers and the VAD 

turns on. 

 

Figure 5.24 – Voice Activity Detector Modules 

5.2.4.1 Log Energy Feature 

The Energy feature uses the change in mean frame energy to detect if 

there is speech in the frame. If there is a drastic change in frame energy the 

Energy flag is set. This feature function receives the frame energy parameter 

(log2_frame_energy) from the Hamming Window module. It uses this each 

new frame energy to calculate the overall frame energy mean and compare it 

to the present frame energy. Mean frame energy (mean_log2_fm_en) is 
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dependent on a variable called lambda (lambda_LTE) which is calculated 

differently in the first few frames. The mean is ignored during the VAD ON 

stage and is stored in a different variable (mean_log2_fm_en_VAD_ON). If the 

difference between the mean frame energy and the current frame energy is 

greater than certain threshold (SNR_THRESHOLD_VAD), the Energy flag is set.  

5.2.4.2 Mel-frequency Cepstral Coefficient Feature 

The Mel-frequency Cepstral Coefficients are used to calculate current 

frame feature value based on the values in the MFCC vector. When the mean 

(mean_vad_mfcc_feature) of all the frames measured is over the current 

frame MFCC feature value (local_aver_mfcc_fea_val), the flag is set 

(VAD_MFCC_State_Flag). The mean is calculated differently depending on the 

frame counter and the behavior of the system. It dynamically changes to 

adapt to the system so it can detect the signal in a better way. For example, 

the mean for the first fifteen frames is equal to the current frame MFCC value 

or the overall mean up to that point whichever is of higher value. The mean 

is slowed down if the current frame feature value is too low compared to the 

mean calculated up to that point. The mean is ignored during the stage 

where VAD is turned ON and is stored into a different variable 

(mean_vad_mfcc_feature_VAD_ON).  
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5.2.4.3 Leaner Predictive Coding Feature 

Leaner Predictive Coding Spectrum feature function is different from 

the aforementioned features mainly because it is uses the variance to detect 

if a signal is present. The values in the vector are calculated and the variance 

for each individual frame is stored. When the current variance (var_spec) is 

much larger than the average variance (aver_var_spec) of the previous 

frames, it indicates that there is speech or not in the frame. The average 

variance is changes based on how much the current value varies. If the 

current variance value is really low then it indicates that the signal dint 

change a lot so the overall average doesn’t change much either. The variance 

flag (VAD_SPEC_State_Flag) is set when there is a sudden change in variance 

when compared to previous frames and is turned off if the change is minimal. 

6 Results and Comparisons 

Having Front-end and Voice Activity Detector of WUW designed, 

implemented, and running on FPGA, it is now necessary to compare and 

evaluate it with WUW-SR system designed with C++ software and running 

on personal computer, to prove that both hardware and software WUW-SR 

systems are working identical. 
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The experiment results from intermediate stages of the hardware 

front-end process as well as spectrograms and features are presented, and the 

results produced by the implementations have been presented. 

6.1 CODEC Audio Data Interface   

Module: codec_dsp_interface.v 

Megafunction Cores: None 

This is the interface to the audio CODEC which receives ADC data 

from the CODEC and sends DAC data to the CODEC.  The interface operates 

in DSP mode only and assumes that the CODEC is the transfer master (the 

CODEC generates the BCLK and L/R clocks.)  In DSP mode, the CODEC 

generates a single clock pulse on the LRCLK_in signal; data is shifted in/out 

on the subsequent clocks.  The CODEC shifts ADC data out on the falling 

edge of BCLK (CODEC_BCLK_in) as MSB first, so the ADC data 

(CODEC_SDATA_in) is registered on the rising edge of BCLK in the interface 

logic.  Likewise, the CODEC registers DAC data (CODEC_SDATA_out) on 

the rising edge of BCLK, so the interface logic shifts DAC data out on the 

falling edge. 

The interface is designed to send/receive 16, 20, 24 or 32-bit wide data 

to/from the CODEC.  The 2-bit input (WORDLENGTH_SEL_in) determines 
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the number of bits to shift per channel: 00 = 16-bit, 01 = 20-bit, 10 = 24-bit, 11 

= 32-bit.  The output ADC_DATA_out contains the parallel left and right data 

from the CODEC.  Depending on the selected wordlength the output data is 

formatted as: 

Wordlength  Left Channel Data  Right Channel Data 

16   ADC_DATA_out[31:16] ADC_DATA_out[15:0] 

20   ADC_DATA_out[39:20] ADC_DATA_out[19:0] 

24   ADC_DATA_out[47:24]      ADC_DATA_out[23:0] 

32   ADC_DATA_out[63:31] ADC_DATA_out[31:0] 

A single BCLK data valid pulse (ADC_DV_out) is generated when all 

bits are registered. The DAC data interface is designed to read data out of a 

FIFO, so the signal DAC_FIFO_RDEN_out generates a single BCLK read 

enable pulse (if DAC_FIFO_EMPTY_in is not active) at the end of each 

transfer to retrieve the next DAC words.  Since the DAC data is sent MSB 

first, the input data must be formatted accordingly for the selected 

wordlength. 

Wordlength  Left Channel Data  Right Channel Data 

16   DAC_DATA_in[63:48] DAC_DATA_in[47:32] 

20   DAC_DATA_in[63:44]         DAC_DATA_in[43:24] 

24   DAC_DATA_in[63:40] DAC_DATA_in[39:16] 
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32   DAC_DATA_in[63:32] DAC_DATA_in[31:0] 

Testbench: tb_codec_dsp_interface.v 

 The CODEC interface testbench verifies that the module 

receives ADC data and transmits DAC data correctly.  Each wordlength is 

tested.  The testbench reports any errors and issues a test pass/fail message 

at the end of the test. 

 

Figure 6.1 – CODEC DSP Interface Simulation Waveforms 

6.2 Integer-to-Floating-Point Function 

Module: int16_to_float32_wrapper.v 

Megafunction Cores: ALTFP_CONVERT (int_2_float.v) 

This module converts 16-bit, signed integer data to single-precision 

(32-bit) floating point values.  The input data is simply routed through the 

int_2_float.v Megafunction core.  The latency of the core is 6 clocks.  The 
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dv_dly_sr.v module instantiates an 8 clock shift register to delay the 

AUDIO_DV_in (audio data valid) input to the FP_DV_out (floating-point 

data valid) signal to allow for the latency of the conversion. 

Testbench: tb_int16_to_float32_wrapper.v 

The integer-to-floating-point testbench writes the following signed, 

16-bit integers into the module under test: -32767, -16384, -1, 0, 1 16384, 32768.  

These values represent the full range of the expected input data.  The 

testbench determines if the correct floating-point values are generated by the 

module under test.  The MATLAB script tb_int2float.m was written to verify 

the correct hexadecimal, single-precision, floating-point outputs. Any 

failures are flagged and a pass/fail message is displayed at the end of the test. 

MATLAB script tb_int2float.m: This M-File displays the integers and the 

corresponding floating-point values used for the int2float verilog / 

megafunction test bench. The output of tb_int2float.m script: 

a = 

        32767       16384           1           0          -1      -16384      -32768 

b = 

    46fffe00    46800000    3f800000    00000000   bf800000        

            c6800000    c7000000 
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Figure 6.2 – 16-bit Integer-to-32bit Floating-point Simulation Waveforms 

6.3 Pre-Emphasis Function 

Module: pre_emphasis.v 

Megafunction Cores:  ALTFP_MULT (mult_float_32.v) 

   ALTFP_ADD_SUB (add_sub_float_32.v) 

The pre-emphasis function performs the following algorithm: 

output = input - PRE_EMPH_FACTOR * previous_input 

When input data is valid (DV_in), the input data (DATA_in) is 

registered as the input_sample.  At the same time, the previous input_sample 

is registered as prev_sample.  The prev_sample data is multiplied by the 

PRE_EMPH_FACTOR (0.975, or 0x3F79999A) using the mult_float_32.v 
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Megafunction.  The output of the multiplication is then subtracted from 

input_sample by the add_sub_float_32.v Megafunction.  The latency of the 

multiplier is 11 clocks and the latency of the subtract is 7 clocks.  A 19-clock 

delay is applied to DV_in to generate DV_out (data valid out) to allow for the 

latencies of the cores. 

Testbench: tb_pre_emphasis.v 

The pre-emphasis function testbench uses the same test values as the 

integer-to-float testbench, except in floating point notation.  The test values 

are written in and the output values are compared against the know answers 

to verify module under test operation.  Any failures are flagged and a 

pass/fail message is displayed at the end of the test. 

A MATLAB script (tb_preemphasis.m) was written to generate the 

expected output values for testbench comparison. 

The output of: tb_preemphasis.m script 

 

 

result = 

 46fffe00   c6732f4e   c679959a   bf79999a   bf800000   c67ffc1a    

   c6833333 
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Figure 6.3 – Pre_emphasis Filter Simulation Waveforms 

6.4 Hamming Window Function 

Module: hamming_window.v 

Megafunction Cores:  ALTFP_MULT (mult_float_32.v) 

     ROM: 1-PORT (rom_256x32bits_hamcoef.v) 

    RAM: 2-PORT (dpram_256x32bits.v) 

The Hamming window function smoothes the input audio data with a 

Hamming curve prior to the FFT function.  A 32-bit, 256 deep dual-port RAM 

(DPRAM) stores 200 input samples.  A state machine handles moving audio 

data into the RAM, and pulling data out of the RAM to be multiplied by the 

Hamming coefficients, which are stored in a ROM memory.  The ROM 

initialization file was created using a MATLAB script, hamming_coef.m, 
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which uses the MATLAB function "hamming" to generate the 200 data points 

and convert them to hexadecimal, 32-bit, single precision floating point 

values.  The script writes the initialization file for the Megafunction IP and 

also a file used for the testbench. 

The state machine first stores 40 incoming audio samples in the RAM, 

starting at address 0x3F and decrementing to location 0x00 (this mimics a 

FIFO).  Once the 40 samples have been stored, the state machine pulls data 

out of the RAM starting at location 0xFF (oldest sample first), decrementing 

to 0x00.  This data is multiplied by the corresponding Hamming coefficient 

from the ROM.  The result of the multiplication is stored in a FIFO for use by 

the FFT.  The state machine accounts for the latency of the multiplication 

core.  Simultaneously, the data in the RAM is shifted up in the memory by 40 

locations (the upper 40 words are discarded).  So the previous contents from 

0x00 to 0xBF are moved to 0x40 to 0xFF, leaving the bottom 40 words open 

for the next set of audio samples. 

To summarize, each FFT calculation is a weighted average of present 

and past audio samples.  

Testbench: tb_hamming_win.v 

The Hamming window testbench writes the value of 1 (0x3F800000) 

200 times into the SAMPLE_DATA_in input of the Hamming window 
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module.  This will cause all of the internal multiplications of the Hamming 

coefficient ROM data to be multiplied by 1.  When the input RAM is 

completely filled, the output FIFO should contain the values of the ROM.  

The input data is written in 40 words at a time and then the testbench 

waits for the FIFO full output to be true.  The testbench will then read the 

FIFO data.  The fourth time the FIFO is read, the FIFO output data is 

compared to the data in the file "tb_ham_coef.txt", which holds the 

Hamming window coefficients used to initialize the Hamming window 

lookup table ROM. 

The testbench will report that all data has passed, if that is the case.  

Otherwise, the errors will be reported.  The testbench also has a Modelsim 

wave file, wave_ham_win.do, with test signals.  The analog test signal is an 

analog representation of the FIFO output data.  After the fourth read from 

the FIFO, the analog data should show the Hamming window curve. 
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Figure 6.4 – Hamming window Simulation waveforms 

6.5 Fast Fourier Transform (FFT) Function 

Module: fft_interface.v 

Megafunction Cores:  FFT (fft_256.v) 

   FIFO (sync_fifo_256x32bits.v) 

The FFT interface module instantiates a single-precision, FFT of 

length 256 (actually 2^3 to 2^8).  The architecture of the FFT is variable 

streaming, natural order in and out and supports an inverse FFT function as 

well.  A state machine reads data out of the Hamming window FIFO when it 

is full and streams this data into the FFT.  The streaming output of the FFT 

writes the complex data (real & imaginary) into separate 256 x 32-bit FIFOs 
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for extraction by the spectrogram function. 

Testbench: fft_256_tb.v 

The Megafunction FFT wizard automatically generates a testbench for 

the FFT.  This testbench only tests the FFT megafunction, not the FFT 

interface module.  The testbench writes input data for various FFT lengths 

from the text files "fft_256_real_input.txt" and "fft_256_imag_input.txt" and 

generates "fft_256_real_output_ver.txt" and "fft_256_imag_output_ver.txt".  

Two other files are also generated: "fft_256_blksize_report.txt", which 

contains the FFT data for each test and "fft_256_inverse_report.txt", which 

contains the inverse (1) or normal (0) selection for each test.  The testbench 

runs four sets of data in this order of lengths: 256, 16, 256, 16.  No inverse 

FFTs are simulated. 

The FFT Megafunction wizard also generates a MATLAB simulation 

for the FFT model (the files are "fft_256_tb.m" and "fft_256_model.m".)  This 

simulation reads the FFT input data text files and the block report and 

inverse report text files from the Verilog simulation and generates the output 

"fft_256_real_output_c_model.txt" and "fft_256_imag_output_c_model.txt".  

The MATLAB script "tb_fft_result_compare.m" compares the outputs of the 

MATLAB model and the simulation for discrepancies. 
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Figure 6.5 – FFT Simulation Waveforms 

6.6 Spectrogram Function 

Module: spectrogram.v 

Megafunction Cores:  ALTFP_MULT (mult_float_32.v) x 3 

    ALTFP_ADD_SUB (add_sub_float_32.v) 

    ALTFP_LOG (log_float_32.v) 

This module takes the complex data generated by the FFT and 

performs the algorithm: 

20 * log10 (fft_real² + fft_imag²) 
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which is the spectrogram output.  The module reads the real and imaginary 

FFT data from the FIFOs whenever data is available.  The real data is 

multiplied by itself through a floating-point multiply Megafunction core, the 

imaginary data is multiplied by itself through another.  The results of these 

multiplies are routed to the inputs of the floating point adder.  The result of 

the adder is then routed to the input of the floating-point log Megafunction.  

Altera's log Megafunction actually calculates the natural log of the input; to 

scale the final result to log10, the output of the log function is multiplied by 

20 / ln(10) - this is a constant value of 0x410AF967 (8.685889). 

A counter is used to compensate for the latency of the Megafunctions 

(generate the FFT FIFO read enables and the spectrogram output write 

enable.) 

Testbench: tb_spectrogram.v 

The spectrogram testbench reads the files generated by the FFT 

testbench, "fft_256_real_output_ver.txt" and "fft_256_imag_output_ver.txt" 

as input to the spectrogram module.  The testbench also reads the text file 

"spec_ver_data.txt", which is created by the MATLAB script 

“tb_spec_ver_gen.m".  The MATLAB script reads the same FFT output text 

files and calculates the spectrogram value.  The verilog testbench compares 

the DUT output to the data in "spec_ver_data.txt" to verify that the data 
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matches. Due to rounding differences between MATLAB and the 

Megafunction cores, there is a slight difference between the values.  The 

testbench reports differences of one or two counts. 

 

Figure 6.6 – Spectrogram Simulation Waveforms 

6.7 Linear Predictive Coding (LPC) Function 

Module: lpc_module.v 

Megafunction Cores:  ALTFP_MULT (mult_float_32.v) x 3 

    ALTFP_ADD_SUB (add_sub_float_32.v) 

    ALTFP_DIV (div_float_32.v) 

    RAM: 2-PORT (dpram_256x32bits.v) 

    RAM: 2-PORT (dpram_32x32bits.v) (x3) 

    FIFO (sync_fifo_256x32bits.v) 
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This module calculates the Linear Predictive Coding coefficients of the 

post Hamming Window audio data. In the Hamming Window module, when 

the windowed data is being written into the FFT FIFO, the data is also 

written out of the Hamming Window module into the LPC module via the 

HAM_DATA_in and HAM_DV_in inputs.  The data is written into a RAM 

block in the LPC Module. 

When 256 data points are written, a state machine in the LPC module 

begins calculation of the LPC coefficients.  The state machine runs the LPC 

calculations in this order: (1) Calculate Auto-Correlation coefficients, (2) 

Calculate the LPC Levinson-Durbin coefficients, (3) Store the LPC 

coefficients in a FIFO to be read by the FFT module.  All of the algorithms' 

calculations share the floating-point Megafunction cores.  The state machine 

sets a calculation select value (calc_sel) which control muxes for the core's 

inputs for current calculation.  A counter (calc_wait) is used by the state 

machine to wait for the cores to complete their calculations. 

Auto-Correlation Calculation 

Once the input RAM is filled with data from the Hamming window, 

the state machine will begin executing the auto-correlation coefficient (acc) 

calculation.  The first state of this process initializes the RAM contents from 

the previous calculations.  The S_INIT_RAM state writes zeros into the auto-
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correlation, temp and LPC coefficient DPRAMs.  When all RAMs have been 

initialized the algorithm indices are set to zero, as well as the auto-

correlation sum (acc_sum) and the auto-correlation function is set for 

calc_sel. Each auto-correlation coefficient is then calculated as the sum... 

for j = 0 to 17 

 for i = 0 to 255 

       acc_sum = acc_sum + (sample_data[i] * sample_data[i+j]) 

 next i 

 acc_ram[j] = acc_sum 

next j 

The states S_AC_READ_OFFSET, S_WAIT_FOR_AC_DATA, 

S_AC_CALC_WAIT, S_AC_NEXT_WAIT perform and store the auto-

correlation coefficients in RAM.  When the ACC calculation is complete the 

state machine will advance to the beginning state for LPC calculation 

(S_START_LD_ALG). 

LPC Calculation 

The LPC coefficients require several calculations for each coefficient.  

In state S_START_LD_ALG, the first auto-correlation coefficient is read from 

the RAM and stored as the first LPC coefficient (lpc_ram[0] = acc_ram[0]) 

and the first alpha value.  The i and j indices are set to 1 and the state 



118 

 

machine advances to S_START_S_CALC.  The i index keeps tracks of the LPC 

coefficient, while the j index is used for the various internal calculations.  The 

LPC algorithm is executed as follows (from MATLAB): 

for i = 1:17   

 % calculate the sum 

for j = 1: (i-1) 

     s = s + lpc_ram(j) * acc_ram(i-j); 

end 

% calculate k 

 k = -(acc_ram(i) + s) / alpha; 

 % calculate lpc_ram[1:(i-1)] 

 for j = 1: (i-1) 

   temp_ram(j) = lpc_ram(j) + (k * lpc_ram(i-j))); 

 end 

 for j = 1: (i-1) 

   lpc_ram(j) = temp_ram(j); 

 end 

 % store new value of lpc_ram[i] and calculate new alpha 

 lpc_ram(i) = k; 

  alpha = alpha * (1-k*k); 



119 

 

 % next interation 

End 

States S_START_S_CALC and S_WAIT_FOR_S_CALC compute the s 

value of the algorithm. States S_START_K_CALC, 

S_WAIT_FOR_K_CALC_SUM and S_WAIT_FOR_K_CALC compute the k 

value.  States S_START_AJ_CALC, S_AJ_CALC1, S_AJ_CALC2, S_AJ_CALC3, 

S_WAIT_FOR_AJ_CALC, S_UPDATE_AJ_DLY, S_UPDATE_AJ and 

S_AI_CALC calculate the temp_ram and lpc_ram coefficients. 

When all of the LPC coefficients have been calculated and stored, the 

state machine jumps to S_LOAD_FFT_FIFO where the FFT_FIFO is loaded 

with LPC coefficients 1 through 17 and then zero padded for the remaining 

values. 

Testbench: tb_lpc.v 

The LPC module testbench writes the data from the file 

"lpc_ham_test_data.txt" into the input of the LPC module (DUT).  The 

testbench displays the final LPC coefficients in transcript window.  The 

MATLAB script "lpc.m" reads the same input file and displays the results.  

The results between the MATLAB script and the simulation output are 

compared to verify operation. 
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6.8 Mel-Frequency Cepstral Coefficients (MFCC) Function 

Module: mfcc_module.v 

Megafunction Cores : ALTFP_MULT (mult_float_32.v) x 3 

    ALTFP_ADD_SUB (add_sub_float_32.v) 

    ALTFP_LOG (log_float_32.v) 

    ALTFP_COMPARE (fp_comp_lt_single.v) 

    ROM: 1-PORT (mel_filter_rom.v) 

    ROM: 1-PORT (rom_512x32bits_dct_matrix.v) 

    RAM: 2-PORT (dpram_32x32bits.v) (x2) 

    RAM: 2-PORT (dpram_256x32bits.v) 

The MFCC HDL module calculates the Mel-Filtered Cepstral 

Coefficients (MFCC) of the input spectral data (audio, LPC or Enhanced 

spectrums).  The MFCC calculation has two major sections, the Mel-Filter 

and the Discrete Cosine Transform (DCT). 

6.8.1 Mel-Scale Filter Function 

Input spectrum data is written into a RAM temporarily until all (129) 

samples are received.  When all samples are received, the state machine 

begins processing the input data through the Mel-Filter.  The Mel-Filter 

consists of a set of triangular coefficients which are stored in mel_filter_rom.  
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The Mel-Filter consists of 25 bands.  The input spectrum is multiplied by the 

coefficients in these bands and the energy for each band is summed.  The 

resulting sums represent a Mel-Scale optimized spectrum.  A graph of the 

Mel-Filter coefficients is shown below: 

 

Figure 6.7 – Mel-scale Filter Output 

The Mel-Filter coefficients are arranged in a ROM (mel_filter_rom.v), 

with a header for each filter section.  The header defines the starting bin (bits 

15-0) and length (bits 31-16). The state machine begins by extracting the first 

32-bit word from the Mel Filter ROM and stores the starting bin and length.  

The state machine then reads out the filter coefficients and corresponding 

spectrum data. The spectrum data is multiplied by the filter coefficient and 
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the results added to a running sum. 

When all data is summed for the current filter, the natural logarithm 

(ln) is calculated for the filter sum.  If the ln of the filter sum is less than an 

energy floor constant, then the ln of the energy floor constant is stored Mel 

Filter RAM.  Otherwise, the ln of the filter sum is stored.  This procedure is 

repeated for each filter band. This is the equivalent algorithm for the Mel 

Filter calculation: 

for i = 0 to MEL_FILTER_COUNT - 1 

 filter_sum = 0 

         for j = starting_bin to starting_bin+length 

           filter_sum = filter_sum + filter_coefficient * spectrum_data  

next j 

         filter_sum_ln = ln(filter_sum) 

  if filter_sum <= ENERY_FLOOR then 

         mel_filter_result(i) = ENERGY_FLOOR_LOG 

     else 

         mel_filter_result(i) = filter_sum_ln 

next i 

The next step in the MFCC algorithm is to calculate the Mel Filter 

energy.  Each result of the Mel Filter sum calculation is read from the Mel-
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Filter RAM and summed.  If the resulting Mel-Filter energy is less than or 

equal to 0, all Mel-Filter Cepstral Coefficients are written as 0.  Otherwise the 

Discrete Cosine Transform of the Mel-Filter sums is calculated. 

6.8.2 Discrete Cosine Transform (DCT) Function  

The DCT is applied to the Mel-Filtered spectrum to compress the 

spectrum and generate the Mel-Scale Cepstral Coefficients.  The DCT 

algorithm in the MFCC module is implemented with a DCT Matrix 

coefficient lookup table.  The table was specifically generated for a 25-band 

input spectrum with 13 output coefficients.  The algorithm for generating the 

DCT lookup table is: 

for i = 1 to NumCepstralCoeff - 1 

 for j = 0 to NumChannels - 1 

  Mx[(i-1)*NumChannels+j] = cos (pi * i/NumChannels * 

 (j+0.5)) 

 next j 

next i 

where:  Mx = DCT matrix 

  NumCepstralCoeff = 13 

  NumChannels = 25 
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This results in a table of 300 coefficients.  The DCT matrix is stored in the 

ROM rom_512x32bits_dct_matrix.v. 

The MFCC state machine calculates the DCT of the Mel-Filtered 

spectrum if the Mel-Filter energy result is greater than 0.  The state machine 

implements the DCT using the following algorithm: 

for i = 0 to NumCepstralCoeff - 2 

 DCToutData[i] = 0.0F; 

  for j = 0 to NumChannels - 1 

   DCToutData[i] = DCToutData[i] + MelFiltlog[j] *                   

    Mx[i*NumChannels+j] 

  next j 

next i 

 where: Mx = DCT matrix 

  NumCepstralCoeff = 13 

  NumChannels = 25 

  DCToutData = the DCT output vector result 

  MelFiltlog = the Mel-Filter (ln) table output  

The last value of the DCT output vector is set to the Mel-Filter Energy result, 

calculated prior to the DCT. 

  DCToutData[NumCepstralCoeff-1] = MelFiltEnergy; 
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The DCT results are written into a RAM memory as the Mel-Filtered Cepstral 

Coefficients. The MFCCs can then be read by subsequent HDL modules. 

6.9 Enhanced Spectrum Function 

Module: enhanced_spec.v 

Megafunction Cores:  ALTFP_MULT (mult_float_32.v) x 3 

    ALTFP_ADD_SUB (add_sub_float_32.v) 

    ALTFP_DIV (div_float_32.v) 

    RAM: 2-PORT (dpram_256x32bits.v) (x2) 

The Enhanced Spectrum HDL module performs an enhancement 

algorithm on the LPC Spectrogram output data. When the spectrogram is 

writing out LPC spectrogram data to the top level, the data is also written 

into the input of the Enhanced Spectrogram (EnhSpec) module via 

LPC_SPEC_DATA_in and LPC_SPEC_DV_in.  The data is written into a RAM 

block in the EnhSpec module. 

The algorithm uses only the single-sided spectrum, so the state 

machine starts the calculations when 128 data points have been written into 

the input RAM.  Similar to the LPC Module, all of the algorithms' 

calculations share the floating-point Megafunction cores.  The state machine 

sets a calculation select value (calc_sel) which control muxes for the core's 
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inputs for current calculation.  A counter (calc_wait) is used by the state 

machine to wait for the cores to complete their calculations. 

Enhanced Spectrum Algorithm 

Once the input RAM is filled with data from the LPC spectrogram, the 

state machine will begin the algorithm (from MATLAB):  

% "Silence Factor" Computation 

normz = 0; 

for i = 1:SPECL 

 normz = normz + temp_spec_vector(i); 

end 

normz = SF * normz + SIL_EN_FLOOR; 

neighborhood_sum = zeros (SPECL,1); 

% Computation of initial neighborhood sum for bin i=0 

local_sum = temp_spec_vector(1); 

for j = 2:HALF_NEIGHB_SIZE+1 

 local_sum = local_sum + temp_spec_vector(j); 

end 

neighborhood_sum(1) = local_sum; 

% Computing Neighborhood Sum X[j+i] 

for i = 2:SPECL 
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 j = i + HALF_NEIGHB_SIZE; 

 k = i - HALF_NEIGHB_SIZE-1; 

% Handling edge effects 

if j >= SPECL  

   indx1 = SPECL; 

else 

   indx1 = j; 

end 

if (k<1) 

 indx2 = 1; 

else 

     indx2 = k; 

end 

 % Adding New Element - Dropping Old one from local 

local_sum=local_sum+temp_spec_vector(indx1)temp_spec_vector(ind

 x2); 

% Removing Center Element from local_sum 

neighborhood_sum(i) = local_sum - temp_spec_vector(i); 

end 

 % Computing denominator 
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denom = zeros(SPECL,1); 

for i=1:SPECL 

 denom(i) = normz + NF * neighborhood_sum(i) + BG * 

background_estm(i); 

end 

% Scaling the output 

out_spec_vector = zeros(SPECL,1); 

for i=1:SPECL 

 tmp = EG * (temp_spec_vector(i) / denom(i)); 

 out_spec_vector(i) = tmp * tmp; 

end 

 

Note: For the initial demonstration, the background noise estimate is 

considered to be zero, so it is not calculated by the HDL logic at this time.  It 

will be added when the VAD logic is incorporated. The algorithm uses the 

following constants: 

  

 LPC_INDEX_MAX             = 8'h7F; // max. spectrum           

            index (128 total) 

 HALF_NBRHOOD_MAX   = 8'h05; 
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 SILENCE_FACTOR            = 32'h3C23D70A;  // 1.0e-2 

 SIL_EN_FLOOR                  = 32'h501502F9;  // 1.0e10 

 NBRHOOD_FACTOR         = 32'h3C23D70A;  // 1.0e-2 

 ENHANCE_GAIN               = 32'h4CBEBC20;  // 1.0e8 

States S_CALC_NORMZ_SUM and S_CALC_NORMZ_SF calculate the normz 

sum. 

States S_INIT_LOCSUM0 and S_CALC_LOCSUM0 calculate the initial (0) 

local sum. States S_CALC_LOCSUM, S_CALC_LOCSUM_WAIT_INDEXH, 

S_CALC_LOCSUM_WAIT_INDEXL, S_CALC_LOCSUM_STAGE1 and 

S_CALC_LOCSUM_STAGE2 calculate the local_sum values. State 

S_CALC_DENOM calculates the denominator. State S_CALC_TEMP 

calculates the temp values and stores them in the temp RAM. 

State S_SCALE_OUTPUT performs the final scaling of the temp data and 

writes the outputs out of the module via ENH_SPEC_DATA_out and 

ENH_SPEC_DV_out; State S_BACKFILL writes out 128 zero values to match 

the length of the normal and LPC spectrograms. Testbench: tb_enh_spec.v 

The LPC module testbench writes the data from the file 

"simout_spec_lpc_data_small.txt" into the input of the enhanced 

spectrogram module (DUT).  The testbench writes output data from the DUT 

into the file "simout_enh_spec_data.txt". The MATLAB script 
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"tb_enh_spec.m" reads the same input file and the simulation output file and 

compares and plots the results and any resulting error. 

6.10 Voice Activity Detector (VAD) 

Module Name: vad_module.v 

Megafunction Cores : ALTFP_MULT (mult_float_32.v) 

     ALTFP_ADD_SUB (add_sub_float_32.v) x 2 

     ALTFP_LOG (log_float_32.v) 

     ALTFP_DIV (div_float_32.v) 

     ALTFP_COMPARE (fp_comp_lt_single.v) 

     ALTFP_CONV (int32_2_float.v) 

     RAM: 2-PORT (dpram_32x32bits.v) 

     RAM: 2-PORT (dpram_256x32bits.v) 

The VAD module determines if the incoming data is voice content 

and sets an output flag accordingly.  The VAD accepts LPC spectral and 

MFCC data, along with the frame energy to calculate three metrics which are 

used to set the VAD state output. 

As with the other output modules, a state machine is used to process 

the incoming data using shared DSP resources.  This method cuts down on 

the amount of DSP cores needed for processing.  Two registers: calc_sel and 
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calc_wait are used, respectively, to select the DSP core calculation inputs and 

set the number of iterations needed to perform the selected calculation. 

A 256 x 32-bit DPRAM is instantiated to store incoming LPC spectrum 

samples (LPC_SPEC_DATA_in, LPC_SPEC_DV_in) and a 32 x 32-bit DPRAM 

stores incoming LPC MFCC samples (MFCC_DATA_in, LPC_MFCC_DV_in).  

The state machine registers FRAME_ENERGY_in when all LPC spectrum 

samples have been stored. After reset, the state machine waits in state 

S_WAIT_FOR_LPC_SPEC_DATA for all LPC spectrum samples to be stored; 

it then registers the input frame energy and begins the log2                         

(frame_energy) calculation (states S_CALC_LOG2FE_STAGE1 and 

S_CALC_LOG2FE_STAGE2).  The state machine will then wait for all LPC 

MFCC input samples to be stored (state S_WAIT_FOR_LPC_MFCC_DATA). 

 When all MFCC input samples have been received, the MFCC feature 

will be calculated in state S_CALC_MFCC_FEATURE. Next, the signal energy 

stats are calculated in states S_CALC_SIG_ENERGY_STATS through 

S_CALC_MEAN_LOG2_FRAME_ENERGY2.  Two frame energy stats are 

calculated for VAD on and off.  These values are used later in the algorithm 

to determine the future VAD state. States S_CALC_VAD_SPEC_STATS 

through S_CALC_VAD_SPEC_VAR calculate the sum, sum^2, mean and 

variance of the LPC spectrum for the spectrum stats. States 
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S_CALC_AVG_SPEC_VAR through S_CALC_AVG_SPEC_VAR2 calculate the 

LPC spectrum average variance.  The spectrum average variance is also 

calculated for VAD on and off conditions and these values are used to 

determine the future VAD state. States S_CALC_MEAN_MFCC_STATS 

through S_CALC_MEAN_MFCC2 calculate the VAD MFCC feature.  VAD on 

and off values for this feature are stored, similar to the frame energy and 

spectrum features. Each of the VAD features (frame energy, spectrum and 

MFCC) are now used to make a determination of the VAD state (on or off) 

based on that single feature.  The frame energy VAD state is calculated in 

states S_SET_VAD_EN_STATE through S_SET_VAD_EN_STATE2, the 

spectrum VAD state in states S_SET_VAD_SPEC_STATE through 

S_SET_VAD_SPEC_STATE2 and finally the MFCC VAD state in states 

S_SET_VAD_MFCC_STATE through S_SET_VAD_MFCC_STATE2. 

The final VAD state determination is made by calculating a score 

based on the weighted sum of the three VAD features.  If the score is less 

than zero, the current frame is considered to contain speech energy and a 

VAD On Count is incremented.  Otherwise a VAD OFF count is incremented.  

When the VAD ON count surpasses a set threshold, the final VAD state will 

be set to ON.  Likewise, if the VAD OFF count exceeds a set threshold, the 
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VAD state will be set to OFF.  These thresholds build in some hysteresis to 

prevent false VAD triggering.  

States S_VAD_SCORE through S_VAD_SCORE_CALC2 calculate the 

VAD score. States S_VAD_DECISION_ON and S_VAD_DECISION_OFF set 

the final VAD state of the current frame and write the VAD state output for 

use at the backend processor. After final VAD state determination, the state 

machine will return to the idle state to wait for the next frame’s data. 

6.11 Hardware Front End Output vs. Software Front End Output 

Because Wake-Up-Word Speech Recognition is a new concept, it is 

difficult to compare its performance with existing Speech Recognition 

Systems. In order to perform a fair analysis we tested the performance of our 

front-end system by comparing its spectrograms and features i.e. (MFCC, 

LPC, and ENH-MFCC) with the software (C, C++) WUW’s front-end 

algorithm implementation, and with the MATLAB front-end model which is 

implemented specially for this reason.  

The front-end processor described in this dissertation has been 

modeled in Verilog HDL and implemented in low cost, high speed, and 

power efficient (Cyclone III EP3C120F780C7) FPGA on DSP development kit. 

The development of the front-end was conducted block by block based on 
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software (C, C++) algorithm implementation and on equivalent floating-

point MATLAB implementation. Each block was tested after it was 

completed to ensure correct operation before the next block was developed. 

The words “Onward” and “Voyager” with 8KHz sampling rate was chosen as 

input audio data for testing our Front-end; we tested and compared (MFCC, 

LPC, and ENH-MFCC) spectrograms and features out of the hardware front-

end model with the MATLAB front-end model and the software (C, C++) 

front-end model as individual models. The results show: 

1. For this test we chose the word “Onward” with 8 KHz sampling rate as 

input audio data for testing our Front-end. As shown in Fig. 6.8, 6.9, 

and 6.10, the MFCC, LPC, and ENH-MFCC spectrograms generated 

from MATLAB, Hardware, and Software (C++) are identical. 
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Figure 6.8 – MATLAB, Hardware, and C++ Front-end MFCC Spectrograms for “Onward” 

Audio Data 

 

 

Figure 6.9 – MATLAB, Hardware, and C++ Front-end LPC Spectrograms for “Onward” 

Audio Data 
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Figure 6.10 – MATLAB, Hardware, and C++ Front-end Enhanced MFCC Spectrograms for 

“Onward” Audio Data 

 

In Fig. 6.11, we generated the “Onward” audio signal with the software 

(C++) front-end spectrograms that shows are identical with the Hardware 

front-end spectrograms shown in Fig. 6.12. 
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Figure 6.11 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for “Onword” 

Audio Data 

 

 

Figure 6.12 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Onword” Audio Data 



138 

 

 

2. In the second test we chose the word “Voyager” with 8 KHz sampling 

rate as input audio data for testing our Front-end. As shown in Fig. 

6.13, 6.14 the MFCC, LPC, and ENH-MFCC spectrograms generated 

from Hardware and Software (C++) are identical. 

 

Figure 6.13 – C++ Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Voyager” Audio Data 
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Figure 6.14 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Voyager” Audio Data. (Due to limited amount of hardware resources the part of the 

data is not show in the resulting spectrograms). 

 

In Fig. 6.15, 6.16 the MFCC, LPC, and ENH-MFCC 12-features 

histograms generated from Hardware and Software (C++) are also identical. 
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Figure 6.15 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager” 

Audio Data (12- Coefficients) 

 

 

Figure 6.16 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for 

“Voyager” Audio Data (12- Coefficients). (Due to limited amount of hardware resources 

the part of the data is not show in the resulting Histograms). 
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We regenerated new MFCC, LPC, and ENH-MFCC histograms with 11-

features by removing the first feature slice because of large dynamic range of 

the first feature that would make the remaining output features very small.            

As shown in Fig. 6.17, 6.18 the MFCC, LPC, and ENH-MFCC 11-features 

histograms generated from Hardware and Software (C++) are identical. 

 

Figure 6.17 – C++ Front-end MFCC, LPC, and Enhanced MFCC Histograms for “Voyager” 

Audio Data (11- Coefficients C2-C12) 
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Figure 6.18 – Hardware Front-end MFCC, LPC, and Enhanced MFCC Histograms for 

“Voyager” Audio Data (11- Coefficients C2-C12). (Due to limited amount of hardware 

resources the part of the data is not show in the resulting Histograms) 

3. In the third test we chose the word “Operator” with 8 KHz sampling 

rate as input audio data for testing our Front-end with VAD built-in. 

As shown in Fig. 6.19, 6.20 the MFCC, LPC, and ENH-MFCC 

spectrograms generated from Hardware and Software (C++) are 

identical. 
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Figure 6.19 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC 

Spectrograms for “Operator” 

 

Figure 6.20 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Operator” Audio Data 

 

In Fig. 6.21, 6.22 the MFCC, LPC, and ENH-MFCC 12-features 

histograms generated from Hardware and Software (C++) are also identical. 



144 

 

 

Figure 6.21 – Hardware Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms 

for “Operator” Audio Data 

 

 

Figure 6.22 – C++ Front-end with VAD MFCC, LPC, and Enhanced MFCC Histograms for 

“Operator” Audio Data 
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7 Conclusions 

In this dissertation, the efficient hardware architecture and 

implementation of front-end of WUW-SR has been presented. We have 

described relevant parts of front-end from theory to hardware design. Details 

have been given of how these designs were implemented on FPGA, and the 

results of these implementations analyzed, which included comparing them 

with software equivalents. WUW front-end is responsible for generating 

three sets of features MFCC, LPC, and ENH-MFCC. These features are 

needed to be decoded with corresponding HMMs in the back-end stage of 

the WUW Speech Recognizer (e.g., server). The computational complexity 

and memory requirement of these sets of feature algorithms is analyzed in 

detail and showed significant identical with software features. The 

partitioned table look-up method is adopted and modified to be suitable in 
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our case with very small table memory requirement. The overall performance 

and area is highly improved. Presented front-end of Wake-Up-Word Speech 

Recognition is a novel solution which is the first hardware system specifically 

designed for WUW-SR based on three different sets of features. The most 

important characteristic of a WUW-SR system is that it should guarantee 

virtually 100% correct rejection of non-WUW (out of vocabulary words - 

OOV) while maintaining correct acceptance rate of 99% or higher (in 

vocabulary words - INV). This requirement sets apart WUW-SR from other 

speech recognition systems because no existing system can guarantee 100% 

reliability by any measure. To demonstrate its effectiveness, the presented 

design has been implemented in cyclone III FPGA hardware. The custom 

DSP board developed is a power efficient, flexible design and can also be 

used as a general purpose prototype board. We have presented a detailed 

breakdown of front-end system into modules and subsystems with initial 

sketches of block diagrams for these modules and subsystems. We have also 

implemented a prototype of our design modules algorithm in MATLAB and 

demonstrated its operation on simple test cases.  

Finally, we implemented test bench file for every module to perform 

simulation, we have identified several points of improvement to our initial 

naive algorithm, so the prospect of implementing a successful front-end 
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system in FPGA seems tenable. While software or DSPs have been sufficient 

to deal with the WUW speech pre-processing, and although software is well-

suited to the post-decoding dictionary look-up, future research work may 

also want to look at the post-processing stage, towards the goal of a complete 

integrated Wake-Up-Word Speech Recognition System on programmable 

chip. 
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